Liouville Brownian Motion at Criticality

被引:0
作者
Rémi Rhodes
Vincent Vargas
机构
[1] Universite Paris-Dauphine,
[2] Ceremade,undefined
[3] Ecole Normale Supérieure,undefined
[4] DMA,undefined
来源
Potential Analysis | 2015年 / 43卷
关键词
Gaussian multiplicative chaos; Critical Liouville quantum gravity; Brownian motion; Heat kernel; Potential theory.; 60J65; 81T40; 60J55; 60J60; 60J80; 60J70; 60K40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we construct the Brownian motion of Liouville Quantum Gravity with central charge c=1 (more precisely we restrict to the corresponding free field theory). Liouville quantum gravity with c=1 corresponds to two-dimensional string theory and is the conjectural scaling limit of large planar maps weighted with a O(n=2) loop model or a Q=4-state Potts model embedded in a two dimensional surface in a conformal manner. Following Garban et al. (2013), we start by constructing the critical LBM from one fixed point xℝ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\mathbb {R}^{2}$\end{document} (or xS2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\mathbb {S}^{2}$\end{document}), which amounts to changing the speed of a standard planar Brownian motion depending on the local behaviour of the critical Liouville measure M′(dx)=−X(x)e2X(x)dx (where X is a Gaussian Free Field, say on S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {S}^{2}$\end{document}). Extending this construction simultaneously to all points in ℝ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{2}$\end{document} requires a fine analysis of the potential properties of the measure M′. This allows us to construct a strong Markov process with continuous sample paths living on the support of M′, namely a dense set of Hausdorff dimension 0. We finally construct the Liouville semigroup, resolvent, Green function, heat kernel and Dirichlet form of (critical) Liouville quantum gravity with a c=1 central charge. In passing, we extend to quite a general setting the construction of the critical Gaussian multiplicative chaos that was initiated in Duplantier et al. (Ann. Probab. 42(5), 1769–1808, 2014), Duplantier et al. (Commun. Math. Phys. 330, 283–330 2014) and also establish new capacity estimates for the critical Gaussian multiplicative chaos.
引用
收藏
页码:149 / 197
页数:48
相关论文
共 73 条
[1]  
Allez R(2013)Lognormal ⋆-scale invariant random measures Probab. Theory Relat. Fields 155 751-788
[2]  
Rhodes R(2013)Gaussian multiplicative chaos and KPZ duality Commun. Math. Phys. 323 451-485
[3]  
Vargas V(2014)Critical Mandelbrot cascades Commun. Math. Phys. 325 685-711
[4]  
Barral J(2011)Counting colored planar maps algebraicity results Journal of Combinatorial Theory Series B 101 315377-688
[5]  
Jin X(1990)Scaling violation in a field theory of closed strings in one physical dimension Nucl. Phys. B338 673-700
[6]  
Rhodes R(2012)Diffusion in quantum geometry Phys. Rev. D 044021 86-1656
[7]  
Vargas V(1992)What is the intrinsic geometry of two-dimensional quantum gravity? Nucl. Phys. B368 671-183
[8]  
Barral J(1988)Conformal Field Theories Coupled to 2-D Gravity in the Conformal Gauge Mod. Phys. Lett. A 3 1651-133
[9]  
Kupiainen A(2014)Planar maps, circle patters and 2dx gravity Annales de l’Institut Henri Poincaré D 1 139-517
[10]  
Nikula M(1995)2D gravity and random matrices Phys. Rep. 254 1-330