Four classes of minimal binary linear codes with wmin/wmax<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{min}/w_{max}<1/2$$\end{document} derived from Boolean functions

被引:0
作者
Xia Li
Qin Yue
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[2] State Key Laboratory of Cryptology,undefined
关键词
Linear codes; Minimal codes; Boolean functions; Weight distributions; 11T71; 94C10; 94B05;
D O I
10.1007/s10623-019-00682-1
中图分类号
学科分类号
摘要
Due to wide applications in communications, data storage, and cryptography, linear codes have received much attention in the past decades. As a subclass of linear codes, minimal linear codes can be used to construct secret sharing schemes with nice access structure. This paper gives the weight distributions of four classes of minimal binary linear codes with wmin/wmax<1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{min}/w_{max}<1/2$$\end{document} derived from Boolean functions.
引用
收藏
页码:257 / 271
页数:14
相关论文
共 55 条
  • [1] Anderson RJ(1998)How to build robust shared control systems Des. Codes Cryptogr. 15 111-124
  • [2] Ding C(1998)Minimal vectors in linear codes IEEE Trans. Inf. Theory 44 2010-2017
  • [3] Helleseth T(2019)Minimal linear codes in odd characteristic IEEE Trans. Inf. Theory 65 4152-4155
  • [4] Kløve T(2005)Linear codes from highly nonlinear functions and their secret sharing schemes IEEE Trans. Inf. Theory 51 2089-2102
  • [5] Ashikhmin A(2018)Linear codes from simplicial complexes Des. Codes Cryptogr. 86 2167-2181
  • [6] Barg A(2015)Linear codes from some 2-designs IEEE Trans. Inf. Theory 61 3265-3275
  • [7] Bartoli D(2015)A class of two-weight and three-weight codes and their applications in secret sharing IEEE Trans. Inf. Theory 61 5835-5842
  • [8] Bonini M(2016)Three-weight cyclic codes and their weight distributions Discret. Math. 339 415-427
  • [9] Carlet C(2018)Minimal binary linear codes IEEE Trans. Inf. Theory 64 6536-6545
  • [10] Ding C(2019)The separation of binary relative three-weight codes and its applications Cryptogr. Commun. 11 979-992