Convergence Radii for Eigenvalues of Tri-Diagonal Matrices

被引:0
作者
James Adduci
Plamen Djakov
Boris Mityagin
机构
[1] The Ohio State University,Department of Mathematics
[2] Sabanci University,undefined
来源
Letters in Mathematical Physics | 2010年 / 91卷
关键词
Primary 47B36; Secondary 47A10; tri-diagonal matrix; operator family; eigenvalues;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a family of infinite tri-diagonal matrices of the form L + zB, where the matrix L is diagonal with entries Lkk = k2, and the matrix B is off-diagonal, with nonzero entries Bk,k+1 = Bk+1,k = kα, 0 ≤ α < 2. The spectrum of L + zB is discrete. For small |z| the nth eigenvalue En (z), En (0) = n2, is a well-defined analytic function. Let Rn be the convergence radius of its Taylor’s series about z = 0. It is proved that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_n \leq C(\alpha) n^{2-\alpha}\quad \text{if}\enspace 0 \leq \alpha <11 /6$$\end{document}.
引用
收藏
相关论文
共 22 条
  • [1] Bender C.M.(1969)Anharmonic oscillator Phys. Rev. 184 1231-1260
  • [2] Wu T.T.(2001)Complex WKB analysis of energy-level degeneracies of non-Hermitian Hamiltonians J. Phys. A 34 L31-L36
  • [3] Bender C.M.(1997)Unfolding the quartic oscilator Ann. Phys. 261 180-218
  • [4] Berry M.(2006)Trace formula and spectral Riemann surfaces for a class of tri-diagonal matrices J. Approx. Theory 139 293-326
  • [5] Meisinger P.N.(2009)Analytic continuation of eigenvalues of a quartic oscillator Comm. Math. Phys. 287 431-457
  • [6] Savage V.M.(1980)The mathematical theory of resonances whose widths are exponentially small Duke Math. J. 47 845-902
  • [7] Simsek M.(1970)Coupling constant analyticity for the anharmonic oscillator Ann. Phys. 58 76-136
  • [8] Delabaere E.(1987)Spectral singularities and the quasi-axactly solvable problems Phys. Lett. A 126 181-183
  • [9] Pham F.(1988)Anharmonic oscillator: construction the string coupling expansions J. Math Phys. 29 2053-2063
  • [10] Djakov P.(1996)Quadratic growth of convergence radii for eigenvalues of two-parameter Sturm–Liouville equations J. Differ. Equ. 128 327-345