Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR

被引:0
|
作者
Stefano Trebeschi
Joost J. M. van Griethuysen
Doenja M. J. Lambregts
Max J. Lahaye
Chintan Parmar
Frans C. H. Bakers
Nicky H. G. M. Peters
Regina G. H. Beets-Tan
Hugo J. W. L. Aerts
机构
[1] the Netherlands Cancer Institute,Department of Radiology
[2] Maastricht University Medical Center,GROW School for Oncology and Developmental Biology
[3] Dana-Farber Cancer Institute,Department of Radiation Oncology and Radiology
[4] Brigham and Women’s Hospital,Department of Radiology
[5] Harvard Medical School,Department of Radiology
[6] Maastricht University Medical Centre,undefined
[7] Zuyderland Medical Center,undefined
[8] location Heerlen,undefined
来源
Scientific Reports | / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Multiparametric Magnetic Resonance Imaging (MRI) can provide detailed information of the physical characteristics of rectum tumours. Several investigations suggest that volumetric analyses on anatomical and functional MRI contain clinically valuable information. However, manual delineation of tumours is a time consuming procedure, as it requires a high level of expertise. Here, we evaluate deep learning methods for automatic localization and segmentation of rectal cancers on multiparametric MR imaging. MRI scans (1.5T, T2-weighted, and DWI) of 140 patients with locally advanced rectal cancer were included in our analysis, equally divided between discovery and validation datasets. Two expert radiologists segmented each tumor. A convolutional neural network (CNN) was trained on the multiparametric MRIs of the discovery set to classify each voxel into tumour or non-tumour. On the independent validation dataset, the CNN showed high segmentation accuracy for reader1 (Dice Similarity Coefficient (DSC = 0.68) and reader2 (DSC = 0.70). The area under the curve (AUC) of the resulting probability maps was very high for both readers, AUC = 0.99 (SD = 0.05). Our results demonstrate that deep learning can perform accurate localization and segmentation of rectal cancer in MR imaging in the majority of patients. Deep learning technologies have the potential to improve the speed and accuracy of MRI-based rectum segmentations.
引用
收藏
相关论文
共 50 条
  • [1] Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
    Trebeschi, Stefano
    van Griethuysen, Joost J. M.
    Lambregts, Doenja M. J.
    Lahaye, Max J.
    Parmer, Chintan
    Bakers, Frans C. H.
    Peters, Nicky H. G. M.
    Beets-Tan, Regina G. H.
    Aerts, Hugo J. W. L.
    SCIENTIFIC REPORTS, 2017, 7
  • [2] Author Correction: Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR
    Stefano Trebeschi
    Joost J. M. van Griethuysen
    Doenja M. J. Lambregts
    Max J. Lahaye
    Chintan Parmar
    Frans C. H. Bakers
    Nicky H. G. M. Peters
    Regina G. H. Beets-Tan
    Hugo J. W. L. Aerts
    Scientific Reports, 8
  • [3] Deep Learning for Fully-Automated Localization and Segmentation of Rectal Cancer on Multiparametric MR (vol 7, 2017)
    Trebeschi, Stefano
    van Griethuysen, Joost J. M.
    Lambregts, Doenja M. J.
    Lahaye, Max J.
    Parmar, Chintan
    Bakers, Frans C. H.
    Peters, Nicky H. G. M.
    Beets-Tan, Regina G. H.
    Aerts, Hugo J. W. L.
    SCIENTIFIC REPORTS, 2018, 8
  • [4] Fully-Automated Ischemic Brain Infarct Volumetric Segmentation in Diffusion Weighted MR using Deep Learning
    Chang, Ken
    Brown, James
    Beers, Andrew
    Rosen, Bruce
    Kalpathy-Cramer, Jayashree
    Ay, Hakan
    STROKE, 2019, 50
  • [5] A fully-automated deep learning pipeline for cervical cancer classification
    Alyafeai, Zaid
    Ghouti, Lahouari
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 141
  • [6] Fully-automated deep learning pipeline for segmentation and classification of breast ultrasound images
    Podda, Alessandro Sebastian
    Balia, Riccardo
    Barra, Silvio
    Carta, Salvatore
    Fenu, Gianni
    Piano, Leonardo
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 63
  • [7] Deep learning-based fully automated detection and segmentation of lymph nodes on multiparametric-mri for rectal cancer: A multicentre study
    Zhao, Xingyu
    Xie, Peiyi
    Wang, Mengmeng
    Li, Wenru
    Pickhardt, Perry J.
    Xia, Wei
    Xiong, Fei
    Zhang, Rui
    Xie, Yao
    Jian, Junming
    Bai, Honglin
    Ni, Caifang
    Gu, Jinhui
    Yu, Tao
    Tang, Yuguo
    Gao, Xin
    Meng, Xiaochun
    EBIOMEDICINE, 2020, 56
  • [8] Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer
    Caner Mercan
    Maschenka Balkenhol
    Roberto Salgado
    Mark Sherman
    Philippe Vielh
    Willem Vreuls
    António Polónia
    Hugo M. Horlings
    Wilko Weichert
    Jodi M. Carter
    Peter Bult
    Matthias Christgen
    Carsten Denkert
    Koen van de Vijver
    John-Melle Bokhorst
    Jeroen van der Laak
    Francesco Ciompi
    npj Breast Cancer, 8
  • [9] Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer
    Mercan, Caner
    Balkenhol, Maschenka
    Salgado, Roberto
    Sherman, Mark
    Vielh, Philippe
    Vreuls, Willem
    Polonia, Antonio
    Horlings, Hugo M.
    Weichert, Wilko
    Carter, Jodi M.
    Bult, Peter
    Christgen, Matthias
    Denkert, Carsten
    van de Vijver, Koen
    Bokhorst, John-Melle
    van der Laak, Jeroen
    Ciompi, Francesco
    NPJ BREAST CANCER, 2022, 8 (01)
  • [10] Fully-Automated Left Ventricle Segmentation Using a Dilated and Adversarial Deep Learning Architecture
    Yao, Heming
    Gryak, Jonathan
    Derksen, Harm
    Attili, Anil K.
    Nallamothu, Brahmajee K.
    Najarian, Kayvan
    CIRCULATION, 2018, 138