Finite element methods and their convergence for elliptic and parabolic interface problems

被引:0
作者
Zhiming Chen
Jun Zou
机构
[1] Institute of Mathematics,
[2] Academia Sinica,undefined
[3] Beijing 100080,undefined
[4] P.R. China; e-mail: zmchen@math03.math.ac.cn ,undefined
[5] Department of Mathematics,undefined
[6] The Chinese University of Hong Kong,undefined
[7] Shatin,undefined
[8] N.T.,undefined
[9] Hong Kong; e-mail: zou@math.cuhk.edu.hk ,undefined
来源
Numerische Mathematik | 1998年 / 79卷
关键词
Mathematics Subject Classification (1991):65N30, 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the finite element methods for solving second order elliptic and parabolic interface problems in two-dimensional convex polygonal domains. Nearly the same optimal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L^2$\end{document}-norm and energy-norm error estimates as for regular problems are obtained when the interfaces are of arbitrary shape but are smooth, though the regularities of the solutions are low on the whole domain. The assumptions on the finite element triangulation are reasonable and practical.
引用
收藏
页码:175 / 202
页数:27
相关论文
共 50 条
[41]   GALERKIN FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS [J].
THOMEE, V .
LECTURE NOTES IN MATHEMATICS, 1984, 1054 :1-235
[42]   MIXED FINITE-ELEMENT METHODS FOR ELLIPTIC PROBLEMS [J].
ARNOLD, DN .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 82 (1-3) :281-300
[43]   CORNER SINGULARITIES IN ELLIPTIC PROBLEMS BY FINITE ELEMENT METHODS [J].
WAIT, R ;
MITCHELL, AR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1971, 8 (01) :45-&
[45]   Optimal Finite Element Methods for Interface Problems [J].
Xu, Jinchao ;
Zhang, Shuo .
DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 :77-91
[46]   Optimal error bounds for partially penalized immersed finite element methods for parabolic interface problems [J].
Lin, Tao ;
Zhuang, Qiao .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 366
[47]   BDF Schemes in Stable Generalized Finite Element Methods for Parabolic Interface Problems with Moving Interfaces [J].
Zhu, Pengfei ;
Zhang, Qinghui .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 124 (01) :107-127
[48]   QUASIOPTIMAL FINITE-ELEMENT METHOD FOR ELLIPTIC INTERFACE PROBLEMS [J].
KING, JT .
COMPUTING, 1975, 15 (02) :127-135
[49]   An immersed finite element method for elliptic interface problems on surfaces [J].
Guo, Changyin ;
Xiao, Xufeng ;
Feng, Xinlong ;
Tan, Zhijun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 131 :54-67
[50]   A Nonconforming Immersed Finite Element Method for Elliptic Interface Problems [J].
Tao Lin ;
Dongwoo Sheen ;
Xu Zhang .
Journal of Scientific Computing, 2019, 79 :442-463