Finite element methods and their convergence for elliptic and parabolic interface problems

被引:0
作者
Zhiming Chen
Jun Zou
机构
[1] Institute of Mathematics,
[2] Academia Sinica,undefined
[3] Beijing 100080,undefined
[4] P.R. China; e-mail: zmchen@math03.math.ac.cn ,undefined
[5] Department of Mathematics,undefined
[6] The Chinese University of Hong Kong,undefined
[7] Shatin,undefined
[8] N.T.,undefined
[9] Hong Kong; e-mail: zou@math.cuhk.edu.hk ,undefined
来源
Numerische Mathematik | 1998年 / 79卷
关键词
Mathematics Subject Classification (1991):65N30, 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the finite element methods for solving second order elliptic and parabolic interface problems in two-dimensional convex polygonal domains. Nearly the same optimal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L^2$\end{document}-norm and energy-norm error estimates as for regular problems are obtained when the interfaces are of arbitrary shape but are smooth, though the regularities of the solutions are low on the whole domain. The assumptions on the finite element triangulation are reasonable and practical.
引用
收藏
页码:175 / 202
页数:27
相关论文
共 50 条
[31]   Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems [J].
Rui, HX .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 146 (02) :373-386
[32]   CONVERGENCE OF A FINITE ELEMENT-FINITE VOLUME SCHEME FOR COUPLED ELLIPTIC PARABOLIC EQUATIONS [J].
EYMARD, R ;
GALLOUET, T .
RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (07) :843-861
[33]   Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems [J].
Lin, Tao ;
Lin, Yanping ;
Sun, Weiwei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 7 (04) :807-823
[34]   ROBUST AND EFFICIENT MIXED HYBRID DISCONTINUOUS FINITE ELEMENT METHODS FOR ELLIPTIC INTERFACE PROBLEMS [J].
Zhu, Jiang ;
Vargas Poblete, Hector Andres .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2019, 16 (05) :767-788
[35]   A priori error estimates in the finite element method for nonself-adjoint elliptic and parabolic interface problems [J].
Sinha, Rajen Kumar ;
Deka, Bhupen .
CALCOLO, 2006, 43 (04) :253-278
[36]   A priori error estimates in the finite element method for nonself-adjoint elliptic and parabolic interface problems [J].
Rajen Kumar Sinha ;
Bhupen Deka .
CALCOLO, 2006, 43 :253-277
[37]   Analysis of Discontinuous Bubble Immersed Finite Element Methods for Elliptic Interface Problems with Nonhomogeneous Interface Conditions [J].
Jo, Gwanghyun ;
Park, Hyeokjoo .
JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (03)
[38]   Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions [J].
Gong, Yan ;
Li, Bo ;
Li, Zhilin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (01) :472-495
[39]   An unfitted interface penalty finite element method for elliptic interface problems [J].
Huang, Peiqi ;
Wu, Haijun ;
Xiao, Yuanming .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 323 :439-460
[40]   Exponential convergence for hp-version and spectral finite element methods for elliptic problems in polyhedra [J].
Schoetzau, Dominik ;
Schwab, Christoph .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1617-1661