Finite element methods and their convergence for elliptic and parabolic interface problems

被引:0
作者
Zhiming Chen
Jun Zou
机构
[1] Institute of Mathematics,
[2] Academia Sinica,undefined
[3] Beijing 100080,undefined
[4] P.R. China; e-mail: zmchen@math03.math.ac.cn ,undefined
[5] Department of Mathematics,undefined
[6] The Chinese University of Hong Kong,undefined
[7] Shatin,undefined
[8] N.T.,undefined
[9] Hong Kong; e-mail: zou@math.cuhk.edu.hk ,undefined
来源
Numerische Mathematik | 1998年 / 79卷
关键词
Mathematics Subject Classification (1991):65N30, 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the finite element methods for solving second order elliptic and parabolic interface problems in two-dimensional convex polygonal domains. Nearly the same optimal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L^2$\end{document}-norm and energy-norm error estimates as for regular problems are obtained when the interfaces are of arbitrary shape but are smooth, though the regularities of the solutions are low on the whole domain. The assumptions on the finite element triangulation are reasonable and practical.
引用
收藏
页码:175 / 202
页数:27
相关论文
共 50 条
[21]   Numerical approximation of elliptic interface problems via isoparametric finite element methods [J].
Varsakelis, C. ;
Marichal, Y. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) :1945-1962
[22]   Preconditioners for spectral element methods for elliptic and parabolic problems [J].
Dutt, P. ;
Biswas, P. ;
Raju, G. Naga .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 215 (01) :152-166
[23]   P1-nonconforming triangular finite element method for elliptic and parabolic interface problems [J].
Hongbo Guan ;
Dongyang Shi .
Applied Mathematics and Mechanics, 2015, 36 :1197-1212
[24]   P 1-nonconforming triangular finite element method for elliptic and parabolic interface problems [J].
Guan, Hongbo ;
Shi, Dongyang .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2015, 36 (09) :1197-1212
[25]   Convergence of Adaptive Weak Galerkin Finite Element Methods for Second Order Elliptic Problems [J].
Xie, Yingying ;
Zhong, Liuqiang .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 86 (01)
[26]   Convergence of Adaptive Weak Galerkin Finite Element Methods for Second Order Elliptic Problems [J].
Yingying Xie ;
Liuqiang Zhong .
Journal of Scientific Computing, 2021, 86
[27]   On finite element methods for heterogeneous elliptic problems [J].
LNCC - Laboratório Nacional de Computação Científica, Av. Getúlio Vargas 333, Petrópolis, CEP 25651-075 RJ, Brazil .
Int. J. Solids Struct., 25-26 (6436-6450)
[28]   On finite element methods for heterogeneous elliptic problems [J].
Loula, A. F. D. ;
Correa, M. R. ;
Guerreiro, J. N. C. ;
Toledo, E. M. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (25-26) :6436-6450
[29]   Weak Galerkin Finite Element Methods for Parabolic Interface Problems with Nonhomogeneous Jump Conditions [J].
Deka, Bhupen ;
Roy, Papri .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (03) :259-279
[30]   HIGH-ORDER FINITE-ELEMENT METHODS FOR SINGULARLY PERTURBED ELLIPTIC AND PARABOLIC PROBLEMS [J].
ADJERID, S ;
AIFFA, M ;
FLAHERTY, JE .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (02) :520-543