In this article, we construct free centroid hom-associative algebras and free centroid hom-Lie algebras. We also construct some other relatively free centroid hom-associative algebras by applying the Gröbner–Shirshov basis theory for (unital) centroid hom-associative algebras. Finally, we prove that the “Poincaré–Birkhoff–Witt theorem” holds for certain type of centroid hom-Lie algebras over a field of characteristic 0, namely, every centroid hom-Lie algebra such that the eigenvectors of the map β linearly generates the whole algebra can be embedded into its universal enveloping centroid hom-associative algebra, and the linear basis of the universal enveloping algebra does not depend on the multiplication table of the centroid hom-Lie algebra under consideration.
机构:
Guangzhou Civil Aviat Coll, Dept Math Teaching, Guangzhou 510403, Peoples R ChinaGuangzhou Civil Aviat Coll, Dept Math Teaching, Guangzhou 510403, Peoples R China
Bai, Yu Xiu
Bokut, Leonid A.
论文数: 0引用数: 0
h-index: 0
机构:
Sobolev Inst Math, Novosibirsk 630090, Russia
Novosibirsk State Univ, Novosibirsk 630090, RussiaGuangzhou Civil Aviat Coll, Dept Math Teaching, Guangzhou 510403, Peoples R China
Bokut, Leonid A.
Chen, Yu Qun
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R ChinaGuangzhou Civil Aviat Coll, Dept Math Teaching, Guangzhou 510403, Peoples R China
Chen, Yu Qun
Zhang, Ze Rui
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R ChinaGuangzhou Civil Aviat Coll, Dept Math Teaching, Guangzhou 510403, Peoples R China