Radii of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document}-Convexity of Some Normalized Bessel Functions of the First Kind

被引:0
作者
Murat Çağlar
Erhan Deniz
Róbert Szász
机构
[1] Kafkas University,Department of Mathematics Faculty of Science and Letters
[2] Sapientia Hungarian University of Transylvania,Department of Mathematics and Informatics
关键词
Normalized Bessel functions of the fist kind; convex functions; starlike functions; -convex functions; radii of ; -convexity; zeros of Bessel functions; Primary 33C10; Secondary 30C45;
D O I
10.1007/s00025-017-0738-9
中图分类号
学科分类号
摘要
In this paper our aim is to determine the radii of α-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha -$$\end{document}convexity of the normalized Bessel functions for two different kinds of normalization in the case when the order is between -2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-2$$\end{document} and -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document}. The key tools in the proof of our main results are the Mittag-Leffler expansion for Bessel functions, properties of zeros of the Bessel functions and their derivatives and some inequalities for complex and real numbers.
引用
收藏
页码:2023 / 2035
页数:12
相关论文
共 14 条
[1]  
Mocanu P(1969)Une propriete de convexite generalisee dans la theorie de la representation conforme Mathematica 11 127-133
[2]  
Mocanu PT(1975)The radius of Proc. Am. Math. Soc. 51 395-400
[3]  
Reade MO(2014)convexity for the class of starlike univalent functions, Proc. Am. Math. Soc. 142 2019-2025
[4]  
Baricz Á(2016) real Comput. Methods Funct. Theory 16 93-103
[5]  
Kupán PA(2014)The radius of starlikeness of normalized Bessel functions of the first kind Anal. Appl. 12 485-509
[6]  
Szász R(2015)The radius of Monatshefte für Math. 176 323-330
[7]  
Baricz Á(2015) convexity of normalized Bessel functions of the first kind Anal. Math. 41 141-151
[8]  
Orhan H(undefined)The radius of convexity of normalized Bessel functions of the first kind undefined undefined undefined-undefined
[9]  
Szász R(undefined)About the radius of starlikeness of Bessel functions of the first kind undefined undefined undefined-undefined
[10]  
Baricz Á(undefined)The radius of convexity of normalized Bessel functions undefined undefined undefined-undefined