Symbolic Computation of Local Symmetries of Nonlinear and Linear Partial and Ordinary Differential Equations

被引:42
作者
Cheviakov A.F. [1 ]
机构
[1] Department of Mathematics and Statistics, University of Saskatchewan
关键词
Point Symmetry; Local Symmetry; Symbolic Computation; Equivalence Transformation; Determine Equation;
D O I
10.1007/s11786-010-0051-4
中图分类号
学科分类号
摘要
The paper illustrates the use of a symbolic software package GeM for Maple to compute local symmetries of nonlinear and linear differential equations (DEs). In the cases when a given DE system contains arbitrary functions or parameters, symbolic symmetry classification is performed. Special attention is devoted to the computation of point symmetries of linear PDE systems. Routines are available that effectively eliminate infinite obvious symmetries of linear DEs. © 2010 Springer Basel AG.
引用
收藏
页码:203 / 222
页数:19
相关论文
共 24 条
[1]  
Akhatov I.S., Gazizov R.K., Ibragimov N.H., Group classification of the equations of nonlinear filtration, Sov. Math. Dokl., 35, pp. 384-386, (1987)
[2]  
Bluman G.W., Simplifying the form of Lie groups admitted by a given differential equation, J. Math. Anal. Appl., 145, pp. 52-62, (1990)
[3]  
Bluman G.W., Kumei S., Symmetries and Differential Equations, (1989)
[4]  
Bluman G.W., Kumei S., Reid G.J., New classes of symmetries for partial differential equations, J. Math. Phys., 29, pp. 806-811, (1988)
[5]  
Bluman G.W., Cheviakov A.F., Ivanova N.M., Framework for nonlocally related PDE systems and nonlocal symmetries: extension, simplification, and examples, J. Math. Phys., 47, (2006)
[6]  
Bluman G.W., Cheviakov A.F., Anco S.C., Applications of Symmetry Methods to Partial Differential Equations, (2010)
[7]  
Bogoyavlenskij O.I., Infinite symmetries of the ideal MHD equilibrium equations, Phys. Lett. A, 291, 4-5, pp. 256-264, (2001)
[8]  
Burde G.I., Potential symmetries of the nonlinear wave equation u<sub>tt</sub> = (uu<sub>x</sub>)<sub>x</sub> and related exact and approximate solutions, J. Phys. A: Math. Gen., 34, pp. 5355-5371, (2001)
[9]  
Butcher J., Carminati J., Vu K.T., A comparative study of the computer algebra packages which determine the Lie point symmetries of differential equations, Comput. Phys. Commun., 155, 2, pp. 92-114, (2003)
[10]  
Cheviakov A.F., Bogoyavlenskij symmetries of ideal MHD equilibria as Lie point transformations, Phys. Lett. A., 321, 1, pp. 34-49, (2004)