Scattering in black hole backgrounds and higher-spin amplitudes. Part I

被引:0
作者
Yilber Fabian Bautista
Alfredo Guevara
Chris Kavanagh
Justin Vines
机构
[1] Perimeter Institute for Theoretical Physics,Department of Physics and Astronomy
[2] York University,Society of Fellows
[3] Harvard University,undefined
[4] Max Planck Institute for Gravitational Physics (Albert Einstein Institute),undefined
来源
Journal of High Energy Physics | / 2023卷
关键词
Classical Theories of Gravity; Scattering Amplitudes; Black Holes; Higher Spin Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
The scattering of massless waves of helicity ∣h∣=0,12,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mid h\mid =0,\frac{1}{2},1 $$\end{document} in Schwarzschild and Kerr backgrounds is revisited in the long-wavelength regime. Using a novel description of such backgrounds in terms of gravitating massive particles, we compute classical wave scattering in terms of 2 → 2 QFT amplitudes in flat space, to all orders in spin. The results are Newman-Penrose amplitudes which are in direct correspondence with solutions of the Regge-Wheeler/Teukolsky equation. By introducing a precise prescription for the point-particle limit, in Part I of this work we show how both agree for h = 0 at finite values of the scattering angle and arbitrary spin orientation.
引用
收藏
相关论文
共 139 条
  • [1] Newman E(1962) = 2 J. Math. Phys. 3 566-undefined
  • [2] Penrose R(1967)undefined J. Math. Phys. 8 2155-undefined
  • [3] Goldberg JN(1968)undefined Proc. Roy. Soc. Lond. A 305 175-undefined
  • [4] Newman ET(1977)undefined Phys. Rev. D 16 237-undefined
  • [5] Penrose R(2019)undefined JHEP 09 056-undefined
  • [6] De Logi WK(2018)undefined JHEP 09 105-undefined
  • [7] Kovacs SJ(2019)undefined JHEP 10 206-undefined
  • [8] Guevara A(2020)undefined JHEP 08 038-undefined
  • [9] Ochirov A(2021)undefined JHEP 08 172-undefined
  • [10] Vines J(2021)undefined JHEP 02 048-undefined