On the Diophantine Equation cx2+p2m=4yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cx^2+p^{2m}=4y^n$$\end{document}

被引:0
作者
K. Chakraborty
A. Hoque
K. Srinivas
机构
[1] Kerala School of Mathematics,Department of Mathematics
[2] Rangapara College,undefined
[3] Institute of Mathematical Sciences,undefined
[4] HBNI,undefined
关键词
Diophantine equation; Lehmer number; primitive divisor; Primary 11D61; 11D41; Secondary 11Y50;
D O I
10.1007/s00025-021-01366-w
中图分类号
学科分类号
摘要
Let c be a square-free positive integer and p a prime satisfying p∤c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\not \mid c$$\end{document}. Let h(-c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(-c)$$\end{document} denote the class number of the imaginary quadratic field Q(-c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\sqrt{-c})$$\end{document}. In this paper, we consider the Diophantine equation cx2+p2m=4yn,x,y≥1,m≥0,n≥3,gcd(x,y)=1,gcd(n,2h(-c))=1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&cx^2+p^{2m}=4y^n,~~x,y\ge 1, m\ge 0, n\ge 3,\\&\quad \gcd (x,y)=1, \gcd (n,2h(-c))=1, \end{aligned}$$\end{document}and we describe all its integer solutions. Our main tool here is the prominent result of Bilu, Hanrot and Voutier on existence of primitive divisors in Lehmer sequences.
引用
收藏
相关论文
共 39 条
[1]  
Abu Muriefah FS(2001)On the Diophantine equation Int. J. Math. Math. Sci. 25 373-381
[2]  
Arif SA(2002)On the Diophantine equation Acta Arith. 103 343-346
[3]  
Al-Ali A(2019)On the solutions of a Lebesgue-Nagell type equation Acta Math. Hungar. 158 17-26
[4]  
Bhatter S(2001)Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte) J. Reine Angew. Math. 539 75-122
[5]  
Hoque A(2002)On Le’s and Bugeaud’s papers about the equation Monatsh. Math. 137 1-3
[6]  
Sharma R(2001)On some exponential Diophantine equations Monatsh. Math. 132 93-97
[7]  
Bilu Y(2001)On the number of solutions of the generalized Ramanujan–Nagell equation J. Reine Angew. Math. 539 55-74
[8]  
Hanrot G(1964)Square Fibonacci numbers, etc Fibonacci Quart. 2 109-113
[9]  
Voutier PM(2020)On a class of Lebesgue–Ljunggren–Nagell type equations J. Number Theory 215 149-159
[10]  
Bilu Y(2015)Generalized Fibonacci and Lucas numbers of the form Int. J. Number Theory 11 931-944