On the generalized Chern conjecture for hypersurfaces with constant mean curvature in a sphere

被引:0
作者
Li Lei
Hongwei Xu
Zhiyuan Xu
机构
[1] Zhejiang University,Center of Mathematical Sciences
[2] Hangzhou Normal University,Department of Mathematics
来源
Science China Mathematics | 2021年 / 64卷
关键词
generalized Chern conjecture; hypersurfaces with constant mean curvature; rigidity theorem; scalar curvature; the second fundamental form; 53C24; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a compact hypersurface with constant mean curvature in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{S}^{n + 1}}$$\end{document}. Denote by H and S the mean curvature and the squared norm of the second fundamental form of M, respectively. We verify that there exists a positive constant γ(n) depending only on n such that if ∣H∣ ⩽ γ(n) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \left( {n,H} \right)\,\, \le \,\,S\,\, \le \,\,\beta \left( {n,H} \right) + {n \over {18}}$$\end{document}, then S ≡ β(n, H) and M is a Clifford torus. Here, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \left( {n,H} \right) = n + {{{n^3}} \over {2\left( {n - 1} \right)}}{H^2} + {{n\left( {n - 2} \right)} \over {2\left( {n - 1} \right)}}\sqrt {{n^2}{H^4} + 4\left( {n - 1} \right){H^2}} $$\end{document}.
引用
收藏
页码:1493 / 1504
页数:11
相关论文
共 40 条
[1]  
Cartan E(1939)Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques Math Z 45 335-367
[2]  
Chang S P(1993)On minimal hypersurfaces with constant scalar curvatures in J Differential Geom 37 523-534
[3]  
Chang S P(1993)A closed hypersurface of constant scalar and mean curvatures in Comm Anal Geom 1 71-100
[4]  
Cheng Q M(1990) is isoparametric Hiroshima Math J 20 1-10
[5]  
Nakagawa H(1990)Totally umbilic hypersurfaces Duke Math J 61 195-206
[6]  
de Almeida S C(2017)Closed 3-dimensional hypersurfaces with constant mean curvature and constant scalar curvature Adv Math 314 278-305
[7]  
Brito F G B(2011)Closed Willmore minimal hypersurfaces with constant scalar curvature in Adv Math 227 131-145
[8]  
Deng Q T(1969) are isoparametric Ann of Math (2) 89 187-197
[9]  
Gu H L(1992)On Chern’s problem for rigidity of minimal hypersurfaces in the spheres Arch Math (Basel) 58 582-594
[10]  
Wei Q Y(1980)Local rigidity theorems for minimal hypersurfaces Math Ann 251 57-71