共 103 条
[1]
Krawczyk B(2016)Learning from imbalanced data: open challenges and future directions Prog. Artif. Intell. 5 221-232
[2]
Wagner N(2016)Theory-guided machine learning in materials science Front. Mater. 3 28-722
[3]
Rondinelli JM(2016)Accelerated search for materials with targeted properties by adaptive design Nat. Commun. 7 689-2393
[4]
Xue D(2016)A general-purpose machine learning framework for predicting properties of inorganic materials npj Comput. Mater. 2 2357-290
[5]
Ward L(2015)The open quantum materials database (OQMD): assessing the accuracy of dft formation energies npj Comput. Mater. 1 023017-1820
[6]
Agrawal A(2019)Survey on deep learning with class imbalance J. Big Data 6 279-1101
[7]
Choudhary A(2017)Interpretable classification models for recidivism prediction J. R. Stat. Soc.: Ser. A 180 105503-190
[8]
Wolverton C(2017)A bayesian framework for learning rule sets for interpretable classification J. Mach. Learn. Res. 18 094104-277
[9]
Kirklin S(2017)Learning physical descriptors for materials science by compressed sensing New J. Phys. 19 1812-510
[10]
Johnson JM(2013)Property phase diagrams for compound semiconductors through data mining Materials 6 1094-646