Histopathological distinction of non-invasive and invasive bladder cancers using machine learning approaches

被引:0
作者
Peng-Nien Yin
Kishan KC
Shishi Wei
Qi Yu
Rui Li
Anne R. Haake
Hiroshi Miyamoto
Feng Cui
机构
[1] Thomas H. Gosnell School of Life Sciences,Golisano College of Computing and Information Sciences
[2] Rochester Institute of Technology,Department of Pathology and Laboratory Medicine
[3] Rochester Institute of Technology,undefined
[4] University of Rochester Medical Center,undefined
来源
BMC Medical Informatics and Decision Making | / 20卷
关键词
Machine learning; Deep learning; Bladder cancer; Histopathology images;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 207 条
[1]  
Bray F(2018)Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA Cancer J Clin 68 394-424
[2]  
Ferlay J(2005)Bladder cancer: epidemiology, staging and grading, and diagnosis Urology 66 4-34
[3]  
Soerjomataram I(2010)Non-invasive papillary urothelial neoplasms: The 2004 WHO/ISUP classification system Pathol Int 60 1-8
[4]  
Siegel RL(1990)The T1 bladder tumor Semin Urol 8 254-261
[5]  
Torre LA(2015)Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity Nat Rev Cancer 15 25-41
[6]  
Jemal A(2012)Best practice in the treatment of non-muscle invasive bladder cancer Ther Adv Urol 4 13-32
[7]  
Kirkali Z(2000)Clinical significance of interobserver differences in the staging and grading of superficial bladder cancer BJU Int 85 48-53
[8]  
Chan T(2011)Computer aided diagnostic tools aim to empower rather than replace pathologists: lessons learned from computational chess J Pathol Inform 2 25-113
[9]  
Manoharan M(2011)Systematic analysis of breast cancer morphology uncovers stromal features associated with survival Sci Transl Med 3 108-1103
[10]  
Algaba F(2009)Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development Pattern Recogn 42 1093-183