Proposal of a methodology for prediction of heavy metals concentration based on PM2.5 concentration and meteorological variables using machine learning

被引:0
|
作者
Shin-Young Park
Hye-Won Lee
Jaymin Kwon
Sung-Won Yoon
Cheol-Min Lee
机构
[1] Seokyeong University,Department of Environmental & Chemical Engineering
[2] Institute of Environment & Health,Department of Public Health
[3] California State University,Department of Nano, Chemical and Biological Engineering
[4] Seokyeong University,undefined
关键词
Prediction model; Ensemble model; Artificial neural networks; Heavy metals; PM; Meteorological factors;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we developed a prediction model for heavy metal concentrations using PM2.5 concentrations and meteorological variables. Data was collected from five sites, encompassing meteorological factors, PM2.5, and 18 metals over 2 years. The study employed four analytical methods: multiple linear regression (MLR), random forest regression (RFR), gradient boosting, and artificial neural networks (ANN). RFR was the best predictor for most metals, and gradient boosting and ANN were optimal for certain metals like Al, Cu, As, Mo, Zn, and Cd. Upon evaluating the final model’s predicted values against the actual measurements, differences in the concentration distribution between measurement locations were observed for Mn, Fe, Cu, Ba, and Pb, indicating varying prediction performances among sites. Additionally, Al, As, Cd, and Ba showed significant differences in prediction performance across seasons. The developed model is expected to overcome the technical limitations involved in measuring and analyzing heavy metal concentrations. It could further be utilized to obtain fundamental data for studying the health effects of exposure to hazardous substances such as heavy metals.
引用
收藏
相关论文
共 50 条
  • [1] Proposal of a methodology for prediction of heavy metals concentration based on PM2.5 concentration and meteorological variables using machine learning
    Park, Shin-Young
    Lee, Hye-Won
    Kwon, Jaymin
    Yoon, Sung-Won
    Lee, Cheol-Min
    ASIAN JOURNAL OF ATMOSPHERIC ENVIRONMENT, 2024, 18 (01)
  • [2] Prediction of PM2.5 Concentration Based on Ensemble Learning
    Peng Y.
    Zhao Z.-R.
    Wu T.-X.
    Wang J.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (06): : 162 - 169
  • [3] Prediction of PM2.5 Concentration Using Spatiotemporal Data with Machine Learning Models
    Ma, Xin
    Chen, Tengfei
    Ge, Rubing
    Xv, Fan
    Cui, Caocao
    Li, Junpeng
    ATMOSPHERE, 2023, 14 (10)
  • [4] The Prediction of PM2.5 Concentration Using Transfer Learning Based on ADGRU
    Xinbiao Lu
    Chunlin Ye
    Miaoxuan Shan
    Buzhi Qin
    Ying Wang
    Hao Xing
    Xupeng Xie
    Zecheng Liu
    Water, Air, & Soil Pollution, 2023, 234
  • [5] The Prediction of PM2.5 Concentration Using Transfer Learning Based on ADGRU
    Lu, Xinbiao
    Ye, Chunlin
    Shan, Miaoxuan
    Qin, Buzhi
    Wang, Ying
    Xing, Hao
    Xie, Xupeng
    Liu, Zecheng
    WATER AIR AND SOIL POLLUTION, 2023, 234 (04):
  • [6] A deep learning model for PM2.5 concentration prediction
    Zhang, Zhendong
    Ma, Xiang
    Yan, Ke
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 428 - 433
  • [7] PM2.5 concentration prediction using machine learning algorithms: an approach to virtual monitoring stations
    Makhdoomi, Ahmad
    Sarkhosh, Maryam
    Ziaei, Somayyeh
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [8] Citywide PM2.5 Concentration Prediction Using Deep Learning Model
    Yang, Xiaonuo
    Sun, Xiao
    Liu, Na
    Chai, Yueting
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 247 - 251
  • [9] Machine-learning-based model and simulation analysis of PM2.5 concentration prediction in Beijing
    Qu Y.
    Qian X.
    Song H.-Q.
    He J.
    Li J.-H.
    Xiu H.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2019, 41 (03): : 401 - 407
  • [10] PM2.5 CONCENTRATION PREDICTION USING DEEP LEARNING IN AIR MONITORING
    Huang, Yi
    FRESENIUS ENVIRONMENTAL BULLETIN, 2021, 30 (12): : 13200 - 13211