Non-Linear Bifurcation Analysis of Reaction-Diffusion Activator-Inhibator System

被引:0
|
作者
Sandip Banerjee
C.G. Chakrabarti
机构
[1] University of Calcutta,Department of Applied Mathematics
来源
Journal of Biological Physics | 1999年 / 25卷
关键词
Bifurcation Analysis; Critical point; Dissipative structure; Reaction-diffusion; Activator-inhibitor;
D O I
暂无
中图分类号
学科分类号
摘要
The paper first deals with the linear stability analysis of an activator-inhibitor reaction diffusion system to determine the nature of the bifurcation point of the system. The non-linear bifurcation analysis determining the steady state solution beyond the critical point enables us to determine characteristic features of the spatial inhomogeneous pattern formation arising out of the bifurcation of the state of the system.
引用
收藏
页码:23 / 33
页数:10
相关论文
共 50 条
  • [31] The effect of perturbed advection on a class of solutions of a non-linear reaction-diffusion equation
    Varatharajan, N.
    DasGupta, Anirvan
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 290 : 33 - 45
  • [32] Non-linear instability and exact solutions to some delay reaction-diffusion systems
    Polyanin, Andrei D.
    Zhurov, Alexei I.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2014, 62 : 33 - 40
  • [33] An Analytical Model for Molecular Communication Over a Non-Linear Reaction-Diffusion Medium
    Abin, Hamidreza
    Gohari, Amin
    Nasiri-Kenari, Masoumeh
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (12) : 8042 - 8054
  • [34] ADJOINT METHOD OF PARAMETER IDENTIFICATION FOR SOME NON-LINEAR REACTION-DIFFUSION SYSTEMS
    Jiang Cheng-shun
    Liu Chao
    Shen Yong-ming
    JOURNAL OF HYDRODYNAMICS, 2005, 17 (01) : 80 - 86
  • [35] Molecular Communication over a Non-linear Reaction-Diffusion Medium: A Tractable Model
    Abin, Hamidreza
    Gohari, Amin
    Nasiri-Kenari, Masoumeh
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [36] A note on Richardson extrapolation as an error estimator for non-linear reaction-diffusion problems
    Abbasian, RO
    Carey, GF
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1997, 13 (07): : 533 - 540
  • [37] LARGE TIME BEHAVIOR OF SOLUTIONS OF SYSTEMS OF NON-LINEAR REACTION-DIFFUSION EQUATIONS
    CONWAY, E
    HOFF, D
    SMOLLER, J
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (01) : 1 - 16
  • [38] BIFURCATION AND REACTION-DIFFUSION SPECTROSCOPY
    SCHIFFMANN, Y
    MATHEMATICAL BIOSCIENCES, 1978, 39 (1-2) : 135 - 145
  • [39] Bifurcation points for a reaction-diffusion system with two inequalities
    Eisner, Jan
    Kucera, Milan
    Vaeth, Martin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 176 - 194
  • [40] Hopf bifurcation in a reaction-diffusion system with conservation of mass
    Sakamoto, Takashi Okuda
    NONLINEARITY, 2013, 26 (07) : 2027 - 2049