Non-Linear Bifurcation Analysis of Reaction-Diffusion Activator-Inhibator System

被引:0
|
作者
Sandip Banerjee
C.G. Chakrabarti
机构
[1] University of Calcutta,Department of Applied Mathematics
来源
Journal of Biological Physics | 1999年 / 25卷
关键词
Bifurcation Analysis; Critical point; Dissipative structure; Reaction-diffusion; Activator-inhibitor;
D O I
暂无
中图分类号
学科分类号
摘要
The paper first deals with the linear stability analysis of an activator-inhibitor reaction diffusion system to determine the nature of the bifurcation point of the system. The non-linear bifurcation analysis determining the steady state solution beyond the critical point enables us to determine characteristic features of the spatial inhomogeneous pattern formation arising out of the bifurcation of the state of the system.
引用
收藏
页码:23 / 33
页数:10
相关论文
共 50 条
  • [21] LARGE TIME BEHAVIOR OF SOLUTIONS OF A NON-LINEAR REACTION-DIFFUSION EQUATION
    CORTAZAR, C
    ELGUETA, M
    HOUSTON JOURNAL OF MATHEMATICS, 1987, 13 (04): : 487 - 497
  • [22] Numerical Simulation of Non-Linear Models of Reaction-Diffusion for a DGT Sensor
    Cecilia Averos, Joan
    Puy Llorens, Jaume
    Uribe-Kaffure, Ramiro
    ALGORITHMS, 2020, 13 (04)
  • [23] SOLUTIONS TO NON-LINEAR REACTION-DIFFUSION EQUATIONS IN 2 SPACE DIMENSIONS
    STRAMPP, W
    STEEB, WH
    ERIG, W
    PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (03): : 731 - 743
  • [25] Bifurcation analysis of reaction-diffusion Schnakenberg model
    Liu, Ping
    Shi, Junping
    Wang, Yuwen
    Feng, Xiuhong
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (08) : 2001 - 2019
  • [26] Bifurcation and Turing patterns of reaction-diffusion activator-inhibitor model
    Wu, Ranchao
    Zhou, Yue
    Shao, Yan
    Chen, Liping
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 482 : 597 - 610
  • [27] The analysis of spatial pattern formation in reaction-diffusion system near bifurcation
    Kurushina, Svetlana E.
    Computer Optics, 2010, 34 (03) : 340 - 349
  • [28] Turing bifurcation analysis for a predator-prey reaction-diffusion system
    Memoona Mehboob
    Salman Ahmad
    Muhammad Aqeel
    Faizan Ahmed
    Asad Ali
    The European Physical Journal Plus, 132
  • [29] Dynamical behavior and bifurcation analysis of a homogeneous reaction-diffusion Atkinson system
    Yang, Xuguang
    Wang, Wei
    Chai, Yanyou
    Yu, Changjun
    BOUNDARY VALUE PROBLEMS, 2018,
  • [30] Turing bifurcation analysis for a predator-prey reaction-diffusion system
    Mehboob, Memoona
    Ahmad, Salman
    Aqeel, Muhammad
    Ahmed, Faizan
    Ali, Asad
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (09):