Homoclinic solutions for Rayleigh type p-Laplacian equations with a deviating argument

被引:0
作者
Kong F. [1 ]
Li X. [1 ]
机构
[1] Department of Mathematics, Anhui Normal University, Wuhu, 241000, Anhui
基金
中国国家自然科学基金;
关键词
An extension of Mawhin’s continuation theorem; Homoclinic solutions; p-Laplacian; Rayleigh type;
D O I
10.1007/s13370-016-0404-5
中图分类号
学科分类号
摘要
By applying an extension of Mawhin’s continuation theorem and some analysis skills, the existence of a set with 2kT-periodic solutions for Rayleigh type p-Laplacian equations with a deviating argument is studied, and then a homoclinic solution is obtained as a limit of a certain subsequence of the above set. © 2016, African Mathematical Union and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:1213 / 1225
页数:12
相关论文
共 22 条
[1]  
Peng S., Zhu S., periodic solutions for p -Laplacian Rayleigh equations with a deviating argument, Nonlinear Anal., 67, pp. 138-146, (2007)
[2]  
Cheung W., Ren J., Periodic solutions for p -Laplacian Rayleigh equations, Nonlinear Anal. TMA, 65, pp. 2003-2012, (2006)
[3]  
Xiong W., Shao J., Existence and uniqueness of positive periodic solutions for Rayleigh type p -Laplacian equation, Nonlinear Anal. Real World Appl., 10, pp. 275-280, (2009)
[4]  
Feng L., Guo L., Lu S., New results of periodic solutions for Rayleigh type p -Laplacian equation with a variable coefficient ahead of the nonlinear term, Nonlinear Anal. TMA., 70, pp. 2072-2077, (2009)
[5]  
Xiao B., Liu W., Periodic solutions for Rayleigh type p -Laplacian equation with a deviating argument, Nonlinear Anal. Real World Appl., 10, pp. 16-22, (2009)
[6]  
Lu S., Gui Z., On the existence of periodic solutions to p -Laplacian Rayleigh differential equation with a delay, J. Math. Anal. Appl., 325, pp. 685-702, (2007)
[7]  
Zong M., Liang H., Periodic solutions for Rayleigh type p -Laplacian equation with deviating arguments, Appl. Math. Lett., 20, pp. 43-47, (2007)
[8]  
Cheung W., Ren J., Periodic solutions for p -Laplacian Rayleigh equations, Nonlinear Anal., 65, pp. 2003-2012, (2006)
[9]  
Tan X., Li X., Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl., 351, pp. 586-594, (2009)
[10]  
Tang X., Lin X., Homoclinic solutions for a class of second-order Hamiltonian systems, J. Math. Anal. Appl., 354, pp. 539-549, (2009)