共 4 条
Rapid and simple determination of polyphyllin I, II, VI, and VII in different harvest times of cultivated Paris polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz by UPLC-MS/MS and FT-IR
被引:0
|作者:
Zhe Wu
Ji Zhang
Furong Xu
Yuanzhong Wang
Jinyu Zhang
机构:
[1] Yunnan Academy of Agricultural Sciences,Institute of Medicinal Plants
[2] Yunnan Technical Center for Quality of Chinese Materia Medica,College of Traditional Chinese Medicine
[3] Yunnan University of Traditional Chinese Medicine,undefined
来源:
Journal of Natural Medicines
|
2017年
/
71卷
关键词:
Smith var. ;
(Franch.) Hand.-Mazz;
Fourier transform infrared (FT-IR) spectroscopy;
Harvest times;
Discrimination;
Determination;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Paris Polyphylla Smith var. yunnanensis (Franch.) Hand.-Mazz (“Dian Chonglou” in Chinese) is a famous herbal medicine in China, which is usually well known for activities of anti-cancer, hemolysis, and cytotoxicity. In this study, Fourier transform infrared (FT-IR) spectroscopy coupled with principal component analysis (PCA) and partial least-squares regression (PLSR) was applied to discriminate samples of P. polyphylla var. yunnanensis harvested in different years and determine the content of polyphyllin I, II, VI, and VII in P. polyphylla var. yunnanensis. Meanwhile, ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to study the dynamic changes of P. polyphylla var. yunnanensis harvested in different years (4, 5, 7, 8, 9, 12, and 13 years old). According to the UPLC-MS/MS result, the optimum harvest time of P. polyphylla var. yunnanensis is 8 years, due to the highest yield of four active components. By the PCA model, P. polyphylla var. yunnanensis could be exactly discriminated, except that two 8-year-old samples were misclassified as 9-year-old samples. For the prediction of polyphyllin I, II, VI, and VII, the quantitative results are satisfactory, with a high value for the determination coefficient (R2) and low values for the root-mean-square error of estimation (RMSEE), root-mean-square error of cross-validation (RMSECV), and root-mean-square error of prediction (RMSEP). In conclusion, FT-IR combined with chemometrics is a promising method to accurately discriminate samples of P. polyphylla var. yunnanensis harvested in different years and determine the content of polyphyllin I, II, VI, and VII in P. polyphylla var. yunnanensis.
引用
收藏
页码:139 / 147
页数:8
相关论文