共 333 条
[51]
Asaoka R(2007)Fear of blindness in the Collaborative Initial Glaucoma Treatment Study: patterns and correlates over time Ophthalmology 114 111-75
[52]
Murata H(2000)Causes of blindness and visual impairment in a population of older Americans: The Salisbury Eye Evaluation Study Arch Ophthalmol 118 569-50
[53]
Iwase A(1982)Kalman filtering for spacecraft attitude estimation J Guid Control Dyn 5 167-103
[54]
Araie M(2014)Using filtered forecasting techniques to determine personalized monitoring schedules for patients with open-angle glaucoma Ophthalmology 121 1342-93
[55]
Ting DSW(2019)Using Kalman filtering to forecast disease trajectory for patients with normal tension glaucoma Am J Ophthalmol 199 95-6
[56]
Cheung CY(2018)Personalized prediction of glaucoma progression under different target intraocular pressure levels using filtered forecasting methods Ophthalmology 125 e106117-47
[57]
Lim G(2019)Artificial intelligence and deep learning in ophthalmology Br J Ophthalmol 103 386-7
[58]
Tan GSW(2018)Clinically applicable deep learning for diagnosis and referral in retinal disease Nat Med 24 6270-3776
[59]
Quang ND(2017)Validating the usefulness of the “random forests” classifier to diagnose early glaucoma with optical coherence tomography Am J Ophthalmol 174 434-7
[60]
Gan A(2014)Discriminating between glaucoma and normal eyes using optical coherence tomography and the ‘random forests’ classifier PLoS One 9 1031-5