Characterizing Entropy in Statistical Physics and in Quantum Information Theory

被引:0
作者
Bernhard Baumgartner
机构
[1] Universität Wien,Institut für Theoretische Physik
来源
Foundations of Physics | 2014年 / 44卷
关键词
Entropy; Axiomatic; Information; Large numbers; 94A17;
D O I
暂无
中图分类号
学科分类号
摘要
A new axiomatic characterization with a minimum of conditions for entropy as a function on the set of states in quantum mechanics is presented. Traditionally unspoken assumptions are unveiled and replaced by proven consequences of the axioms. First the Boltzmann–Planck formula is derived. Building on this formula, using the Law of Large Numbers—a basic theorem of probability theory—the von Neumann formula is deduced. Axioms used in older theories on the foundations are now derived facts.
引用
收藏
页码:1107 / 1123
页数:16
相关论文
共 22 条
[11]  
Hayashi M(1973)Wiss. Z. Karl-Marx-Univ. Endlich-dimensionale Dichtematrizen II 22 139-291
[12]  
Ochs W(1929)Gött. Nachr. Thermodynamik quantenmechanischer Gesamtheiten 1 273-28
[13]  
Planck M(1974)How chaotic is a state of a quantum system? Rep. Math. Phys. 6 15-260
[14]  
Tomamichel M(1978)General properties of entropy Rev. Mod. Phys. 50 221-undefined
[15]  
Colbeck R(undefined)undefined undefined undefined undefined-undefined
[16]  
Renner R(undefined)undefined undefined undefined undefined-undefined
[17]  
Uhlmann A(undefined)undefined undefined undefined undefined-undefined
[18]  
Uhlmann A(undefined)undefined undefined undefined undefined-undefined
[19]  
Uhlmann A(undefined)undefined undefined undefined undefined-undefined
[20]  
von Neumann J(undefined)undefined undefined undefined undefined-undefined