A Density Result in Two-Dimensional Linearized Elasticity, and Applications

被引:0
|
作者
Antonin Chambolle
机构
[1] CEREMADE (CNRS UMR 7534),
[2] Université de Paris-Dauphine,undefined
[3] place de Lattre de Tassigny,undefined
[4] 75775 Paris CEDEX 16,undefined
[5] France. e-mail: antonin.chambolle@ceremade.dauphine.fr,undefined
来源
Archive for Rational Mechanics and Analysis | 2003年 / 167卷
关键词
Vector Field; Finite Number; Linearize Elasticity; Elasticity Problem; Density Result;
D O I
暂无
中图分类号
学科分类号
摘要
We show that in a two-dimensional bounded open set whose complement has a finite number of connected components, the vector fields uH1(Ωℝ2) are dense in the space of fields whose symmetrized gradient e(u) is in L2(Ωℝ4). This allows us to show the continuity of some linearized elasticity problems with respect to variations of the set, with applications to shape optimization or the study of crack evolution.
引用
收藏
页码:211 / 233
页数:22
相关论文
共 50 条