Massless Dirac equation from Fibonacci discrete-time quantum walk

被引:0
作者
Di Molfetta G. [1 ,2 ]
Honter L. [1 ,3 ]
Luo B.B. [1 ,3 ]
Wada T. [4 ]
Shikano Y. [1 ,5 ]
机构
[1] Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, Natural Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Aichi
[2] LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 6, UMR 8112, Paris
[3] School of Physics, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, 6009, WA
[4] Department of Electrical and Electronic Engineering, Ibaraki University, 12-4-1 Nakanarusawa, Hitachi, 316-8511, Ibaraki
[5] Institute for Quantum Studies, Chapman University, 1 University Dr., Orange, 92866, CA
基金
日本学术振兴会;
关键词
Massless Dirac equation; Quantum Simulation; Quantum Walk;
D O I
10.1007/s40509-015-0038-6
中图分类号
学科分类号
摘要
Discrete-time quantum walks can be regarded as quantum dynamical simulators since they can simulate spatially discretized Schrödinger, massive Dirac, and Klein–Gordon equations. Here, two different types of Fibonacci discrete-time quantum walks are studied analytically. The first is the Fibonacci coin sequence with a generalized Hadamard coin and demonstrates six-step periodic dynamics. The other model is assumed to have three- or six-step periodic dynamics with the Fibonacci sequence. We analytically show that these models have ballistic transportation properties and continuous limits identical to those of the massless Dirac equation with coin basis change. © 2015, Chapman University.
引用
收藏
页码:243 / 252
页数:9
相关论文
共 51 条
[1]  
Feynman R.P., Hibbs A.R., Quantum Mechanics and Path Integrals, (1965)
[2]  
Aharonov Y., Davidovich L., Zagury N., Quantum random walks, Phys. Rev. A, 48, (1993)
[3]  
Meyer D.A., From quantum cellular automata to quantum lattice gases, J. Stat. Phys., 85, (1996)
[4]  
Gudder S.P., Quantum Probability, (1988)
[5]  
Cardano F., Massa F., Qassim H., Karimi E., Slussarenko S., Paparo D., de Lisio C., Sciarrino F., Santamato E., Boyd R.W., Marrucci L., Quantum Walks and Quantum Simulation of Wavepacket Dynamics with Twisted Photons
[6]  
Broome M.A., Fedrizzi A., Lanyon B.P., Kassal I., Aspuru-Guzik A., White A.G., Discrete Single-Photon Quantum Walks with Tunable Decoherence, Phys. Rev. Lett., 104, (2010)
[7]  
Kitagawa T., Broome M.A., Fedrizzi A., Rudner M.S., Berg E., Kassal I., Aspuru-Guzik A., Demler E., White A.G., Observation of topologically protected bound states in photonic quantum walks, Nat. Commun., 3, (2012)
[8]  
Schreiber A., Gabris A., Rohde P.P., Laiho K., Stefanak M., Potocek V., Hamilton C., Jex I., Silberhorn C., A 2D quantum walk simulation of two-particle dynamics, Science, 336, (2012)
[9]  
Schmitz H., Matjeschk R., Schneider C., Glueckert J., Enderlein M., Huber T., Schaetz T., Quantum Walk of a Trapped Ion in Phase Space, Phys. Rev. Lett., 103, (2009)
[10]  
Zahringer F., Kirchmair G., Gerritsma R., Solano E., Blatt R., Roos C.F., Realization of a Quantum Walk with One and Two Trapped Ions, Phys. Rev. Lett., 104, (2010)