On long-time behavior for solutions of the Gear–Grimshaw system

被引:0
作者
Qihe Niang
Deqin Zhou
机构
[1] Chongqing University,College of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2023年 / 74卷
关键词
Asymptotic behavior; Gear–Grimshaw system; Coupled KdV–KdV systems; 35Q53; 35B35; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the long-time behavior of the solutions to the Gear–Grimshaw system, which is a type of coupled KdV–KdV systems. We prove two energy decay results to all the solutions of the Gear–Grimshaw systems when the initial datum is in L2(R)×L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}({\mathbb {R}}) \times L^{2}({\mathbb {R}})$$\end{document} and H1(R)×H1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}({\mathbb {R}}) \times H^{1}({\mathbb {R}})$$\end{document}, respectively. Our results imply that some Gear–Grimshaw systems do not admit time periodic solutions for any initial data in L2(R)×L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}({\mathbb {R}}) \times L^{2}({\mathbb {R}})$$\end{document} without smallness assumptions.
引用
收藏
相关论文
共 60 条
[11]  
Ash JM(1967)A model system for strong interaction between internal solitary waves J. Fluid Mech. 29 593-607
[12]  
Cohen J(1984)Solitary internal waves in deep water Stud. Appl. Math. 70 235-258
[13]  
Wang G(1985)Weak and strong interactions between internal solitary waves Stud. Appl. Math. 72 95-124
[14]  
Bisognin E(1980)Strong interactions between solitary waves belonging to different wave modes Pure Appl. Geophys. 119 780-797
[15]  
Bisognin V(1998)Solitary waves in compressible fluid J. Funct. Anal. 159 110-136
[16]  
Menzala GP(2013)Large time asymptotics of solutions to the generalized Korteweg–de Vries equation Commun. Math. Phys. 324 129-146
[17]  
Biswas A(1980)On decay properties of solutions of the k-generalized KdV equation J. Fluid Mech. 97 115-127
[18]  
Ismail MS(2020)Wake collapse in the thermocline and internal solitary waves Tran. Am. Math. Soc. 373 1043-1107
[19]  
Bona J(2021)Asymptotic dynamics for the small data weakly dispersive one-dimensional Hamiltonian ABCD system SIAM J. Math. Anal. 53 3838-3855
[20]  
Chen H(2004)On long time behavior of solutions of the Schrödinger–Korteweg–de Vries system Commun. Pure Appl. Anal. 3 417-431