On long-time behavior for solutions of the Gear–Grimshaw system

被引:0
作者
Qihe Niang
Deqin Zhou
机构
[1] Chongqing University,College of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2023年 / 74卷
关键词
Asymptotic behavior; Gear–Grimshaw system; Coupled KdV–KdV systems; 35Q53; 35B35; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the long-time behavior of the solutions to the Gear–Grimshaw system, which is a type of coupled KdV–KdV systems. We prove two energy decay results to all the solutions of the Gear–Grimshaw systems when the initial datum is in L2(R)×L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}({\mathbb {R}}) \times L^{2}({\mathbb {R}})$$\end{document} and H1(R)×H1(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}({\mathbb {R}}) \times H^{1}({\mathbb {R}})$$\end{document}, respectively. Our results imply that some Gear–Grimshaw systems do not admit time periodic solutions for any initial data in L2(R)×L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}({\mathbb {R}}) \times L^{2}({\mathbb {R}})$$\end{document} without smallness assumptions.
引用
收藏
相关论文
共 60 条
[1]  
Albert J(2000)Stability and symmetry of solitary-wave solutions modeling interactions of long waves J. Math. Pure Appl. 79 195-226
[2]  
Linares F(2008)On the local well-posedness for some systems of coupled KdV equations Nonlinear Anal. 69 692-715
[3]  
Alvarez B(2018)Nonlinear stability of Gardner breathers J. Differ. Eqs. 264 1192-1230
[4]  
Carvajal X(2013)Nonlinear stability of mKdV breathers Commun. Math. Phys. 324 233-262
[5]  
Alejo MA(2013)The Gardner equation and the Trans. AMS 365 195-212
[6]  
Alejo MA(1996)-stability of the N-soliton solution of the Korteweg–de Vries equation J. Fourier Anal. Appl. 2 507-517
[7]  
Muñoz C(2003)On strongly interacting internal solitary waves Adv. Differ. Equ. 8 443-469
[8]  
Alejo MA(2010)Exponential stabilization of a coupled system of Korteweg–de Vries equations with localized damping Appl. Math. Comput. 216 3662-3670
[9]  
Muñoz C(2002)1-Soliton solution of the coupled KdV equation and Gear-Grimshaw model Discrete Contin. Dyn. Syst. Ser. B 2 313-378
[10]  
Vega L(1992)Solitary waves in nonlinear dispersive systems Commun. Math. Phys. 143 287-313