共 50 条
- [41] On the monodromy of the moduli space of Calabi–Yau threefolds coming from eight planes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}^3}$$\end{document} Mathematische Annalen, 2013, 355 (1) : 187 - 214
- [42] SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${SL(2, \mathbb{R})}$$\end{document} -invariant probability measures on the moduli spaces of translation surfaces are regular Geometric and Functional Analysis, 2013, 23 (6) : 1705 - 1729
- [43] Computation of the First Stiefel–Whitney Class for the Variety ℳ0.nℝ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{{\mathrm{\mathcal{M}}}_{0.n}^{\mathbb{R}}} $$\end{document} Journal of Mathematical Sciences, 2015, 209 (2) : 192 - 211
- [44] Symplectic three-algebra and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}=6$\end{document}, Sp(2N)×U(1) superconformal Chern–Simons-matter theory The European Physical Journal C, 2010, 69 (1-2): : 305 - 314
- [45] Polygons in Minkowski three space and parabolic Higgs bundles of rank 2 on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{C}{{\mathbb{P}}^1} $\end{document} Transformation Groups, 2013, 18 (4) : 995 - 1018
- [46] Some geometric results on K-theory with Z/kZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}/k{\mathbb{Z}}$$\end{document}-coefficients São Paulo Journal of Mathematical Sciences, 2020, 14 (2) : 562 - 579
- [47] Parabolic Presentations of the Super Yangian Y(glM|N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Y(\mathfrak{gl}_{M|N})}$$\end{document} Associated with Arbitrary 01-Sequences Communications in Mathematical Physics, 2016, 346 (1) : 313 - 347
- [48] SU(2)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU(2)^2$$\end{document}-Invariant Gauge Theory on Asymptotically Conical Calabi–Yau 3-Folds The Journal of Geometric Analysis, 2023, 33 (4)
- [49] Coset space dimensional reduction and Wilson flux breaking of ten-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{N}=1$\end{document} , E8 gauge theory The European Physical Journal C, 2009, 59 (4): : 917 - 935
- [50] The Underlying Fiber Bundle Geometry of the CAM Gauge Model of the Standard Model of Particle Physics: SU(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {SU(3)}$$\end{document} Advances in Applied Clifford Algebras, 2021, 31 (2)