Independence Polynomials of Bipartite Graphs

被引:0
作者
Huihui Zhang
Xia Hong
机构
[1] Luoyang Normal University,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2022年 / 45卷
关键词
Independence polynomial; Bipartite graph; Matching number; Connectivity; Diameter; 05C30; 05C35; 05C69; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
Given a connected graph G with vertex set VG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_G$$\end{document}, a subset I of VG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_G$$\end{document} is called independent if there are no edges between any two vertices from I. Let ik(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_k(G)$$\end{document} be the number of independent sets with cardinality k of G and let i0(G)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_0(G)=1$$\end{document}. The independence polynomial of G is defined as I(G;x)=∑k⩾0ik(G)xk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(G;x)=\sum _{k\geqslant 0} i_k(G)x^k$$\end{document}, where i(G)=I(G;1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G)=I(G;1)$$\end{document} is called the Merrifield–Simmons index of G. In this paper, some extremal problems on the coefficients of the independence polynomial of bipartite graphs are considered. Firstly, the second largest ik(G)(k⩾2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_k(G)\ (k\geqslant 2)$$\end{document} among all bipartite graphs is determined, and the graph which simultaneously minimizes all coefficients of I(G; x) among all bipartite graphs is characterized. Secondly, the largest ik(G)(k⩾2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_k(G)\ (k\geqslant 2)$$\end{document} among all bipartite graphs with at least one cycle is determined, and the unique graph which minimizes all coefficients of I(G; x) among all bipartite graphs with given matching number (resp. diameter at most four, connectivity) is characterized as well.
引用
收藏
页码:3043 / 3065
页数:22
相关论文
共 88 条
[1]  
Bautista-Ramos C(2020)Independence polynomials of Fibonacci trees are log-concave Fibonacci Q. 58 49-54
[2]  
Guillen-Galvan C(2019)Log-concavity of some independence polynomials via a partial ordering Discrete Math. 342 18-28
[3]  
Gomez-Salgado P(2018)On the stability of independence polynomials Electron. J. Comb. 25 46-1143
[4]  
Bautista-Ramos C(2018)On the unimodality of independence polynomials of very well-covered graphs Discrete Math. 341 1138-326
[5]  
Guillen-Galvan C(2013)On the roots of expected independence polynomials J. Graph Theory 73 322-8
[6]  
Gomez-Salgado P(2013)Note on the smallest root of the independence polynomial Comb. Probab. Comput. 22 1-357
[7]  
Brown JI(2007)The roots of the independence polynomial of a claw-free graph J. Comb. Theory B 97 350-800
[8]  
Cameron B(2018)Minimizing the number of independent sets in triangle-free regular graphs Discrete Math. 341 793-35
[9]  
Brown JI(2017)Maximal-clique partitions and the Roller Coaster Conjecture J. Comb. Theory A 145 25-171
[10]  
Cameron B(2010)On the number of independent sets in the trees of a fixed diameter J. Appl. Ind. Math. 4 163-346