Hill stability of the satellite in the elliptic restricted four-body problem

被引:0
作者
Chao Liu
Shengping Gong
机构
[1] Tsinghua University,School of Aerospace Engineering
来源
Astrophysics and Space Science | 2018年 / 363卷
关键词
Four-body problem; Binary subsystem; Restricted; Hill stability; Asteroid capture;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an elliptic restricted four-body system including three primaries and a massless particle. The orbits of the primaries are elliptic, and the massless particle moves under the mutual gravitational attraction. From the dynamic equations, a quasi-integral is obtained, which is similar to the Jacobi integral in the circular restricted three-body problem (CRTBP). The energy constant C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C$\end{document} determines the topology of zero velocity surfaces, which bifurcate at the equilibrium point. We define the concept of Hill stability in this problem, and a criterion for stability is deduced. If the actual energy constant Cac(>0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C_{\mathrm{ac}}\ ( {>} 0 ) $\end{document} is bigger than or equal to the critical energy constant Ccr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C_{\mathrm{cr}}$\end{document}, the particle will be Hill stable. The critical energy constant is determined by the mass and orbits of the primaries. The criterion provides a way to capture an asteroid into the Earth–Moon system.
引用
收藏
相关论文
共 38 条
  • [1] Agnor C.B.(2006)Neptune’s capture of its moon Triton in a binary-planet gravitational encounter Nature 441 192-194
  • [2] Hamilton D.P.(2009)Dynamical aspects of an equilateral restricted four-body problem Math. Probl. Eng. 2009 1-23
  • [3] Alvarez-Ramirez M.(1982)Central configurations of four bodies with one inferior mass Celest. Mech. 28 9-15
  • [4] Vidal C.(2010)Capturing near earth objects Res. Astron. Astrophys. 10 587-598
  • [5] Arenstorff R.F.(2012)Periodic orbits in the concentric circular restricted four-body problem and their invariant manifolds Physica D 241 1158-1167
  • [6] Baoyin H.X.(2016)On stability of planetary motion during stellar approaches Mon. Not. R. Astron. Soc. 462 429-447
  • [7] Chen Y.(2015)Analytical criteria of Hill stability in the elliptic restricted three body problem Astrophys. Space Sci. 358 37-858
  • [8] Li J.F.(2015)Asteroid capture using lunar flyby Adv. Space Res. 56 848-553
  • [9] Blazevski D.(2017)Satellite capture mechanism in a sun-planet-binary four-body system Astrophys. Space Sci. 362 40-147
  • [10] Ocampo C.(2016)Hill stability of the satellites in coplanar four-body problem Mon. Not. R. Astron. Soc. 462 547-351