Stability properties of two-term fractional differential equations

被引:0
作者
Jan Čermák
Tomáš Kisela
机构
[1] Brno University of Technology,Institute of Mathematics
来源
Nonlinear Dynamics | 2015年 / 80卷
关键词
Fractional differential equation; Caputo derivative; Asymptotic stability; Equilibrium point;
D O I
暂无
中图分类号
学科分类号
摘要
This paper formulates explicit necessary and sufficient conditions for the local asymptotic stability of equilibrium points of the fractional differential equation Dαy(t)+f(y(t),Dβy(t))=0,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {D}^{\alpha }y(t)+f(y(t),\, {D}^{\beta }y(t))=0,\quad t>0 \end{aligned}$$\end{document}involving two Caputo derivatives of real orders α>β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >\beta $$\end{document} such that α/β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha /\beta $$\end{document} is a rational number. First, we consider this equation in the linearized form and derive optimal stability conditions in terms of its coefficients and orders α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta $$\end{document}. As a byproduct, a special fractional version of the Routh–Hurwitz criterion is established. Then, using the recent developments on linearization methods in fractional dynamical systems, we extend these results to the original nonlinear equation. Some illustrating examples, involving significant linear and nonlinear fractional differential equations, support these results.
引用
收藏
页码:1673 / 1684
页数:11
相关论文
共 36 条
  • [1] Ahmed E(2006)On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems Phys. Lett. A 358 1-4
  • [2] El-Sayed AMA(2007)Analysis of the van der Pol oscillator containing derivatives of fractional order J. Vib. Control 13 1291-1301
  • [3] El-Saka HAA(2013)Stability regions for linear fractional differential systems and their discretizations Appl. Math. Comput. 219 7012-7022
  • [4] Barbosa RS(2011)Mittag-Leffler functions and their applications J. Appl. Math. 2011 51-47
  • [5] Machado JAT(2011)A survey on the stability of fractional differential equations Eur. Phys. J. Spec. Top. 193 27-633
  • [6] Vinagre BM(2013)Fractional dynamical system and its linearization theorem Nonlinear Dyn. 71 621-719
  • [7] Calderon AJ(1986)Discretized fractional calculus SIAM J. Math. Anal. 17 704-298
  • [8] Čermák J(2009)Stability of fractional-order systems with rational orders: a survey Fract. Calc. Appl. Anal. 12 269-2328
  • [9] Kisela T(2009)On the stability of linear systems with fractional-order elements Chaos Solitons Fract. 40 2317-3140
  • [10] Nechvátal L(2012)State variables and transients of fractional order differential systems Comput. Math. Appl. 64 3117-907