A Variant of Wigner’s Theorem in Normed Spaces

被引:0
作者
Dijana Ilišević
Aleksej Turnšek
机构
[1] University of Zagreb,Department of Mathematics, Faculty of Science
[2] University of Ljubljana,Faculty of Maritime Studies and Transport
[3] Portorož,undefined
[4] Slovenia and Institute of Mathematics,undefined
[5] Physics and Mechanics,undefined
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Wigner’s theorem; isometry; normed space; support functional; projective geometry; 39B05; 46C50; 47J05; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
Let X and Y be normed spaces over F∈{R,C}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}} \in \{{\mathbb {R}}, {\mathbb {C}}\}$$\end{document} and f:X→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f :X \rightarrow Y$$\end{document} a surjective mapping. Suppose that |ϕf(y)(f(x))|=|ϕy(x)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\phi _{f(y)}(f(x))|=|\phi _y(x)|$$\end{document} holds for all x,y∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in X$$\end{document} and all support functionals ϕf(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{f(y)}$$\end{document} at f(y) and ϕy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _y$$\end{document} at y, or equivalently, suppose that for all semi-inner products on X and Y, compatible with given norms, |[f(x),f(y)]|=|[x,y]|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert [f(x), f(y)] \vert = \vert [x, y] \vert $$\end{document} holds for all x,y∈X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y \in X$$\end{document}. Then f=σU\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=\sigma U$$\end{document}, where σ:X→F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma :X \rightarrow {\mathbb {F}}$$\end{document} is a phase function, and U:X→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U :X \rightarrow Y$$\end{document} is a linear or a conjugate linear isometry.
引用
收藏
相关论文
共 7 条
[1]  
Faure CA(2002)An elementary proof of the fundamental theorem of projective geometry Geom. Dedic. 90 145-151
[2]  
Giles JR(1967)Classes of semi-inner-product spaces Trans. Am. Math. Soc. 129 436-446
[3]  
Lomont JS(1963)The Wigner unitary-antiunitary theorem Ann. Math. 78 548-559
[4]  
Mendelson P(1961)Semi-inner-product spaces Trans. Am. Math. Soc. 100 29-43
[5]  
Lumer G(2020)On normed spaces with the Wigner property Ann. Funct. Anal. 11 523-539
[6]  
Wang R(undefined)undefined undefined undefined undefined-undefined
[7]  
Bugajewski D(undefined)undefined undefined undefined undefined-undefined