Sharp Riesz-Fejér Inequality for Harmonic Hardy Spaces

被引:0
作者
Petar Melentijević
Vladimir Božin
机构
[1] University of Belgrade,Faculty of Mathematics
来源
Potential Analysis | 2021年 / 54卷
关键词
Riesz-Fejér inequality; Schur test; Harmonic functions; Sharp estimates; Primary 31A05; Secondary 30H10;
D O I
暂无
中图分类号
学科分类号
摘要
We prove sharp version of Riesz-Fejér inequality for functions in harmonic Hardy space hp(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h^{p}(\mathbb {D})$\end{document} on the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {D}$\end{document}, for p > 1, thus extending the result from Kayumov et al. (Potential Anal. 52, 105–113, 2020) and resolving the posed conjecture.
引用
收藏
页码:575 / 580
页数:5
相关论文
共 15 条
[1]  
Beckenbach EF(1938)On a theorem of Fejér and Riesz J. London Math. Soc. 13 82-86
[2]  
Calderón AP(1950)On theorems of M. Riesz and Zygmund Proc. Amer. Math. Soc. 1 533-535
[3]  
Fejér L(1921)Uber einige funktionentheoretische Ungleichungen Math. Z. 11 305-314
[4]  
Riesz F(1934)On the moduli of regular functions Proc. London Math. Soc. 36 532-546
[5]  
Frazer H(2000)Best constants for the Riesz projection J. Funct. Anal. 175 370-392
[6]  
Hollenbeck B(1990)Norms of positive operators on Lp spaces Proc. Amer. Math. Soc. 109 135-146
[7]  
Verbitsky IE(1956)On an inequality of Fejér and Riesz Ann. Math. 63 572-587
[8]  
Howard R(2019)On Riesz type inequalities for harmonic mappings on the unit disk Trans. Amer. Math. Soc. 372 4031-4051
[9]  
Schep AR(2020)Riesz-Fejér inequalities for Harmonic functions Potential Anal. 52 105-113
[10]  
Huber A(1944)On subharmonic functions and their application to the theory of surfaces Izv. Akad. Nauk SSSR Ser. Mat. 8 175-194