Some Invariant Skeletons for ℓ-u Groups and MV-Algebras
被引:0
|
作者:
Antonio Di Nola
论文数: 0引用数: 0
h-index: 0
机构:University of Salerno,
Antonio Di Nola
Giacomo Lenzi
论文数: 0引用数: 0
h-index: 0
机构:University of Salerno,
Giacomo Lenzi
论文数: 引用数:
h-index:
机构:
Anna Carla Russo
机构:
[1] University of Salerno,
[2] I.I.A.S.S. “E. R. Caianiello”,undefined
来源:
Order
|
2019年
/
36卷
关键词:
MV-algebra;
Lattice ordered Abelian group with strong unit;
Skeleton;
Geometric theory;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper we study some invariants for MV-algebras and thanks to Mundici’s equivalence we transfer these invariants to ℓ-groups with strong unit. In particular, we prove that, as it happens to MV-algebras, every ℓ-u group has two families of skeletons, which we call the n-skeletons and the nω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${}_{n}^{\omega }$\end{document}-skeletons. Then we study the classes of ℓ-u groups (and of MV-algebras) which coincide with the union of such skeletons, called here ω-skeletal and ωω\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${}_{\omega }^{\omega }$\end{document}-skeletal ℓ-u groups (resp. MV-algebras). We also analyze the problem of axiomatizing in terms of geometric theories or theories of presheaf type these classes of ℓ-u groups (and of MV-algebras).
机构:
Univ Salerno, Dept Math, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, ItalyUniv Salerno, Dept Math, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
Barbieri, Giuseppina Gerarda
Di Nola, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salerno, Dept Math, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, ItalyUniv Salerno, Dept Math, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy
Di Nola, Antonio
Lenzi, Giacomo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salerno, Dept Math, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, ItalyUniv Salerno, Dept Math, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy