Some Invariant Skeletons for ℓ-u Groups and MV-Algebras

被引:0
|
作者
Antonio Di Nola
Giacomo Lenzi
Anna Carla Russo
机构
[1] University of Salerno,
[2] I.I.A.S.S. “E. R. Caianiello”,undefined
来源
Order | 2019年 / 36卷
关键词
MV-algebra; Lattice ordered Abelian group with strong unit; Skeleton; Geometric theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study some invariants for MV-algebras and thanks to Mundici’s equivalence we transfer these invariants to ℓ-groups with strong unit. In particular, we prove that, as it happens to MV-algebras, every ℓ-u group has two families of skeletons, which we call the n-skeletons and the nω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}_{n}^{\omega }$\end{document}-skeletons. Then we study the classes of ℓ-u groups (and of MV-algebras) which coincide with the union of such skeletons, called here ω-skeletal and ωω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}_{\omega }^{\omega }$\end{document}-skeletal ℓ-u groups (resp. MV-algebras). We also analyze the problem of axiomatizing in terms of geometric theories or theories of presheaf type these classes of ℓ-u groups (and of MV-algebras).
引用
收藏
页码:77 / 97
页数:20
相关论文
共 50 条
  • [31] Extension of submeasures on MV-algebras with values in l-groups
    Michalikova, Alzbeta
    COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 : 277 - 282
  • [32] Ulam-Renyi Games, MV-Algebras, Specker ℓ-Groups
    Mundici, Daniele
    STUDIA LOGICA, 2025,
  • [33] A common abstraction of MV-algebras and abelian l-groups
    Paoli F.
    Studia Logica, 2000, 65 (3) : 355 - 366
  • [34] The spectrum problem for Abelian l-groups and MV-algebras
    Lenzi, Giacomo
    Di Nola, Antonio
    ALGEBRA UNIVERSALIS, 2020, 81 (03)
  • [35] Relative subalgebras of MV-algebras
    Lawrence Peter Belluce
    Antonio Di Nola
    Giacomo Lenzi
    Algebra universalis, 2017, 77 : 345 - 360
  • [36] MODAL OPERATORS ON MV-ALGEBRAS
    Harlenderova, Magdalena
    Rachunek, Jiri
    MATHEMATICA BOHEMICA, 2006, 131 (01): : 39 - 48
  • [37] Riesz MV-algebras and their logic
    Di Nola, Antonio
    Leustean, Ioana
    PROCEEDINGS OF THE 7TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT-2011) AND LFA-2011, 2011, : 140 - 145
  • [38] Filter topologies on MV-algebras
    Luan, Cuicui
    Yang, Yichuan
    SOFT COMPUTING, 2017, 21 (10) : 2531 - 2535
  • [39] Lexicographic pseudo MV-algebras
    Dvurecenskij, Anatolij
    JOURNAL OF APPLIED LOGIC, 2015, 13 (04) : 825 - 841
  • [40] State morphism MV-algebras
    Dvurecenskij, Anatolij
    Kowalski, Tomasz
    Montagna, Franco
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2011, 52 (08) : 1215 - 1228