Some Invariant Skeletons for ℓ-u Groups and MV-Algebras

被引:0
|
作者
Antonio Di Nola
Giacomo Lenzi
Anna Carla Russo
机构
[1] University of Salerno,
[2] I.I.A.S.S. “E. R. Caianiello”,undefined
来源
Order | 2019年 / 36卷
关键词
MV-algebra; Lattice ordered Abelian group with strong unit; Skeleton; Geometric theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study some invariants for MV-algebras and thanks to Mundici’s equivalence we transfer these invariants to ℓ-groups with strong unit. In particular, we prove that, as it happens to MV-algebras, every ℓ-u group has two families of skeletons, which we call the n-skeletons and the nω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}_{n}^{\omega }$\end{document}-skeletons. Then we study the classes of ℓ-u groups (and of MV-algebras) which coincide with the union of such skeletons, called here ω-skeletal and ωω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}_{\omega }^{\omega }$\end{document}-skeletal ℓ-u groups (resp. MV-algebras). We also analyze the problem of axiomatizing in terms of geometric theories or theories of presheaf type these classes of ℓ-u groups (and of MV-algebras).
引用
收藏
页码:77 / 97
页数:20
相关论文
共 50 条
  • [21] On monadic MV-algebras
    Di Nola, A
    Grigolia, R
    ANNALS OF PURE AND APPLIED LOGIC, 2004, 128 (1-3) : 125 - 139
  • [22] On implication in MV-algebras
    Jānis Cīrulis
    Algebra universalis, 2007, 56 : 237 - 239
  • [23] On implication in MV-algebras
    Cirulis, Janis
    ALGEBRA UNIVERSALIS, 2007, 56 (02) : 237 - 239
  • [24] ON EPICOMPLETE MV-ALGEBRAS
    Dvurecenskij, Anatolij
    Zahiri, Omid
    JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 2018, 5 (01): : 165 - 183
  • [25] Polyhedral MV-algebras
    Busaniche, Manuela
    Cabrer, Leonardo
    Mundici, Daniele
    FUZZY SETS AND SYSTEMS, 2016, 292 : 150 - 159
  • [26] Roughness in MV-algebras
    Rasouli, S.
    Davvaz, B.
    INFORMATION SCIENCES, 2010, 180 (05) : 737 - 747
  • [27] MV-observables and MV-algebras
    Dvurecenskij, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 259 (02) : 413 - 428
  • [28] Some results on pseudo MV-algebras with square roots
    Dvurecenskij, Anatolij
    Zahiri, Omid
    FUZZY SETS AND SYSTEMS, 2023, 465
  • [29] Some fuzzy concepts of BCI, BCK and MV-algebras
    Hoo, CS
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1998, 18 (3-4) : 177 - 189
  • [30] ON SOME CLASSES OF STATE-MORPHISM MV-ALGEBRAS
    Di Nola, Antonio
    Dvurecenskij, Anatolij
    MATHEMATICA SLOVACA, 2009, 59 (05) : 517 - 534