Some Invariant Skeletons for ℓ-u Groups and MV-Algebras

被引:0
|
作者
Antonio Di Nola
Giacomo Lenzi
Anna Carla Russo
机构
[1] University of Salerno,
[2] I.I.A.S.S. “E. R. Caianiello”,undefined
来源
Order | 2019年 / 36卷
关键词
MV-algebra; Lattice ordered Abelian group with strong unit; Skeleton; Geometric theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study some invariants for MV-algebras and thanks to Mundici’s equivalence we transfer these invariants to ℓ-groups with strong unit. In particular, we prove that, as it happens to MV-algebras, every ℓ-u group has two families of skeletons, which we call the n-skeletons and the nω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}_{n}^{\omega }$\end{document}-skeletons. Then we study the classes of ℓ-u groups (and of MV-algebras) which coincide with the union of such skeletons, called here ω-skeletal and ωω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${}_{\omega }^{\omega }$\end{document}-skeletal ℓ-u groups (resp. MV-algebras). We also analyze the problem of axiomatizing in terms of geometric theories or theories of presheaf type these classes of ℓ-u groups (and of MV-algebras).
引用
收藏
页码:77 / 97
页数:20
相关论文
共 50 条
  • [1] Some Invariant Skeletons for -u Groups and MV-Algebras
    Di Nola, Antonio
    Lenzi, Giacomo
    Russo, Anna Carla
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2019, 36 (01): : 77 - 97
  • [2] Some Results on Quasi MV-Algebras and Perfect Quasi MV-Algebras
    Dvurecenskij, Anatolij
    Zahiri, Omid
    STUDIA LOGICA, 2025,
  • [3] ON SOME EXTENSIONS OF THE CLASS OF MV-ALGEBRAS
    Mruczek-Nasieniewska, Krystyna
    LOGIC AND LOGICAL PHILOSOPHY, 2016, 25 (01) : 35 - 49
  • [4] Some results on derivations of MV-algebras
    Wang, Jun-Tao
    He, Peng-Fei
    She, Yan-Hong
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2023, 38 (01) : 126 - 143
  • [5] Some results on derivations of MV-algebras
    Jun-tao Wang
    Peng-fei He
    Yan-hong She
    Applied Mathematics-A Journal of Chinese Universities, 2023, 38 : 126 - 143
  • [6] DERIVATIONS OF MV-ALGEBRAS FROM HYPER MV-ALGEBRAS
    Hamidi, M.
    Borzooei, R. A.
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (03): : 643 - 659
  • [7] Localization of MV-algebras and lu-groups
    Busneag, D
    Piciu, D
    ALGEBRA UNIVERSALIS, 2003, 50 (3-4) : 359 - 380
  • [8] Some results in primary ideals of MV-algebras
    Forouzesh, F.
    Saeid, A. Borumand
    2014 IRANIAN CONFERENCE ON INTELLIGENT SYSTEMS (ICIS), 2014,
  • [9] Pseudo MV-algebras are intervals in l-groups
    Dvurecenskij, A
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 : 427 - 445
  • [10] Separable MV-algebras and lattice-ordered groups
    Marra, Vincenzo
    Menni, Matias
    JOURNAL OF ALGEBRA, 2024, 646 : 66 - 99