Meromorphic solutions of certain difference equations of first order

被引:0
作者
Yong Liu
机构
[1] Shaoxing College of Arts and Sciences,Department of Mathematics
[2] University of Eastern Finland,Department of Physics and Mathematics
来源
Aequationes mathematicae | 2014年 / 87卷
关键词
30D35; 39B12; Meromorphic functions; difference equations; value distribution; finite order;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we investigate the growth and value distribution of meromorphic solutions of a first order difference equation with small coefficients in the complex plane.
引用
收藏
页码:309 / 323
页数:14
相关论文
共 23 条
[1]  
Bergweiler W.(2007)Zeros of differences of meromorphic functions Math. Proc. Camb. Philos. Soc. 142 133-147
[2]  
Langley J.K.(1962)On integral and meromorphic functions J. Lond. Math. Soc. 37 17-27
[3]  
Clunie J.(2009)On the Nevanlinna characteristic of Ramanujan J. 16 105-129
[4]  
Chiang Y.M.(2009)( Trans. Am. Math. Soc. 361 3767-3791
[5]  
Feng S.J.(1996) +  Kodai Math. J. 19 341-354
[6]  
Chiang Y.M.(1988)) and difference equations in the complex plane J. Lond. Math. Soc. 37 88-104
[7]  
Feng S.J.(2006)On the growth of logarithmic differences. difference quotients and logarithmic derivatives of meromorphic functions Ann. Acad. Sci. Fenn. Math. 94 463-478
[8]  
Chen Z.X.(2006)The zero, pole and order of meromorphic solutions of differential equations with meromorphic coefficients J. Math. Appl. 314 477-487
[9]  
Gundersen G.G.(2007)Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates Proc. Lond. Math. Soc. 94 443-474
[10]  
Halburd R.G.(1974)Nevanlinna theory for the difference operator Canad. Math. Bull. 17 317-358