Genome-wide survey and expression analysis of the MADS-box gene family in soybean

被引:0
|
作者
Yongjun Shu
Diansi Yu
Dan Wang
Donglin Guo
Changhong Guo
机构
[1] Harbin Normal University,Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology
来源
Molecular Biology Reports | 2013年 / 40卷
关键词
MADS-box; Soybean; Phylogenetic analysis; Duplication; Expression patterns;
D O I
暂无
中图分类号
学科分类号
摘要
MADS-box genes encode important transcription factors in plants that are involved in many processes during plant growth and development. An investigation of the soybean genome revealed 106 putative MADS-box genes. These genes were classified into two classes, type I and type II, based on phylogenetic analysis. The soybean type II group has 72 members, which is higher than that of Arabidopsis, indicating that soybean type II genes have undergone a higher rate of duplication and/or a lower rate of gene loss after duplication. Soybean MADS-box genes are present on all chromosomes. Like Arabidopsis and rice MADS-box genes, soybean MADS-box genes expanded through tandem gene duplication and segmental duplication events. There are many duplicate genes distributed across the soybean genome, with two genomic regions, i.e., MADS-box gene hotspots, where MADS-box genes with high degrees of similarity are clustered. Analysis of high-throughput sequencing data from soybean at different developmental stages and in different tissues revealed that MADS-box genes are expressed in embryos of various stages and in floral buds. This expression pattern suggests that soybean MADS-box genes play an important role in soybean growth and floral development.
引用
收藏
页码:3901 / 3911
页数:10
相关论文
共 50 条
  • [1] Genome-wide survey and expression analysis of the MADS-box gene family in soybean
    Shu, Yongjun
    Yu, Diansi
    Wang, Dan
    Guo, Donglin
    Guo, Changhong
    MOLECULAR BIOLOGY REPORTS, 2013, 40 (06) : 3901 - 3911
  • [2] Genome-wide analysis of the MADS-Box gene family in Chrysanthemum
    Won, So Youn
    Jung, Jae-A
    Kim, Jung Sun
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2021, 90
  • [3] Genome-wide analysis of the MADS-box gene family in cucumber
    Hu, Lifang
    Liu, Shiqiang
    GENOME, 2012, 55 (03) : 245 - 256
  • [4] Genome-wide Analysis of the MADS-Box Gene Family in Watermelon
    Wang, Ping
    Wang, Songbo
    Chen, Yong
    Xu, Xiaomin
    Guang, Xuanmin
    Zhang, Youhua
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 80 : 341 - 350
  • [5] Genome-Wide Analysis and the Expression Pattern of the MADS-Box Gene Family in Bletilla striata
    Mi, Ze-Yuan
    Zhao, Qian
    Lu, Chan
    Zhang, Qian
    Li, Lin
    Liu, Shuai
    Wang, Shi-Qiang
    Wang, Zhe-Zhi
    Niu, Jun-Feng
    PLANTS-BASEL, 2021, 10 (10):
  • [6] Genome-wide identification and analysis of the MADS-box gene family in apple
    Tian, Yi
    Dong, Qinglong
    Ji, Zhirui
    Chi, Fumei
    Cong, Peihua
    Zhou, Zongshan
    GENE, 2015, 555 (02) : 277 - 290
  • [7] Genome-wide analysis of the MADS-box gene family in Populus trichocarpa
    Leseberg, Charles H.
    Li, Aili
    Kang, Hui
    Duvall, Melvin
    Mao, Long
    GENE, 2006, 378 : 84 - 94
  • [8] Genome-Wide Analysis of the MADS-Box Gene Family in Brachypodium distachyon
    Wei, Bo
    Zhang, Rong-Zhi
    Guo, Juan-Juan
    Liu, Dan-Mei
    Li, Ai-Li
    Fan, Ren-Chun
    Mao, Long
    Zhang, Xiang-Qi
    PLOS ONE, 2014, 9 (01):
  • [9] Genome-wide identification and analysis of the MADS-box gene family in sesame
    Wei, Xin
    Wang, Linhai
    Yu, Jingyin
    Zhang, Yanxin
    Li, Donghua
    Zhang, Xiurong
    GENE, 2015, 569 (01) : 66 - 76
  • [10] Genome-wide Identification and Analysis of the MADS-box Gene Family in Melon
    Hao, Xin
    Fu, Yu
    Zhao, Wei
    Liu, Lifei
    Bade, Rengui
    Hasi, Agula
    Hao, Jinfeng
    JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 2016, 141 (05) : 507 - 519