Generalization of Titchmarsh’s theorem for the Fourier transform in the Space L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {L}^{2}(\mathbb {R}^{n})$$\end{document}

被引:0
作者
R. Daher
M. Boujeddaine
M. El Hamma
机构
[1] University of Hassan II,Department of Mathematics, Faculty of Sciences Aïn Chock
[2] Université Moulay Ismaïl,Department of Mathematics and Computer Sciences, Faculty of Sciences, Equipe d’Analyse Harmonique et Probabilités
关键词
Fourier transform; Fourier Lipschitz class; Spherical mean operator; 42B12;
D O I
10.1007/s13370-015-0368-x
中图分类号
学科分类号
摘要
In this paper, we prove the generalization of Titchmarsh’s theorem for the Fourier transform for functions satisfying the (n,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n,\alpha )$$\end{document}-Fourier Lipschitz condition in the space L2(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {L}^{2}(\mathbb {R}^{n})$$\end{document}.
引用
收藏
页码:753 / 758
页数:5
相关论文
共 7 条
[1]  
Abouelaz A(2013)Generalization of Titchmarsh’s theorem for the Jacobi transform FACTA UNIVERSITATIS (NIS) Ser. Math. Inform. 28 43-51
[2]  
Daher R(2008)Equivalence of K-functionnals and modulus of smoothness constructed by generalized Dunkl translations Izv. Vyssh. Uchebn. Zaved. Mat. 8 3-15
[3]  
El Hamma M(2008)Growth properties of Fourier transforms via moduli of continuity J. Funct. Anal. 255 2265-2285
[4]  
Belkina ES(undefined)undefined undefined undefined undefined-undefined
[5]  
Platonov SS(undefined)undefined undefined undefined undefined-undefined
[6]  
Bray WO(undefined)undefined undefined undefined undefined-undefined
[7]  
Pinsky MA(undefined)undefined undefined undefined undefined-undefined