Influence of Carrier Transport on Diffraction Efficiency of Steady-State Photocarrier Grating

被引:0
作者
Q. M. Sun
Y. F. Wang
C. M. Gao
H. Cui
机构
[1] University of Electronic Science and Technology of China,School of Optoelectronic Information
来源
International Journal of Thermophysics | 2015年 / 36卷
关键词
Carrier transport; Diffraction efficiency; Rigorous coupled-wave analysis; Steady-state photocarrier grating;
D O I
暂无
中图分类号
学科分类号
摘要
A two-dimensional theoretical model of a diffractive steady-state photocarrier grating (SSPCG) has been developed. The carrier diffusion equation with a spatially periodic excitation source was solved, and an analytical expression of the carrier density distribution was obtained. Based on the band-filling theory and the Kramers–Kronig relation, the carrier-induced refractive index change of SSPCG was estimated, and the refractive index profile was determined. The diffraction efficiency of the SSPCG was calculated by multilevel rigorous coupled-wave analysis. Simulations were carried out to investigate the influence of the carrier transport properties on the diffraction efficiency of the SSPCG. The results show that a semiconductor material with a longer lifetime and a smaller diffusivity will have a higher diffraction efficiency. The spatial amplitude of the carrier density and the grating strength of the SSPCG are closely related to the grating period. For an InP-based SSPCG, the diffraction efficiency of the +1st\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+1\mathrm{st}$$\end{document} transmitted wave reaches its maximum value (25 %) when the grating provides a π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} phase shift. The theoretical analysis and conclusions are helpful for material selection and experimental parameter determination of a diffractive SSPCG.
引用
收藏
页码:1029 / 1036
页数:7
相关论文
共 34 条
[1]  
Zhang XR(2006)undefined Appl. Phys. Lett. 89 112120-undefined
[2]  
Li BC(2012)undefined Int. J. Thermophys. 33 2103-undefined
[3]  
Gao CM(1978)undefined Adv. Solid State Phys. 18 241-undefined
[4]  
Sun QM(1982)undefined J. Appl. Phys. 53 3237-undefined
[5]  
Wang YF(1987)undefined Phys. Rev. B 36 3247-undefined
[6]  
Gao CM(1986)undefined Appl. Phys. Lett. 49 791-undefined
[7]  
Wan Y(1987)undefined J. Appl. Phys. 62 4563-undefined
[8]  
Eichler HJ(1990)undefined J. Appl. Phys. 67 6329-undefined
[9]  
Eichler HJ(1990)undefined IEEE J. Quantum Electron. 26 113-undefined
[10]  
Massmann F(1995)undefined J. Opt. Soc. Am. A 12 1077-undefined