Linear ℓ-intersection pairs of MDS codes and their applications to AEAQECCs

被引:0
|
作者
Ziteng Huang
Weijun Fang
Fang-Wei Fu
机构
[1] Nankai University,Chern Institute of Mathematics and LPMC
[2] Shandong University,School of Cyber Science and Technology
[3] Nankai University,Chern Institute of Mathematics and LPMC, and Tianjin Key Laboratory of Network and Data Security Technology
来源
Cryptography and Communications | 2022年 / 14卷
关键词
Linear codes; Linear ; -intersection pairs; MDS codes; Generalized Reed-solomon codes; Asymmetric entanglement-assisted quantum error-correcting codes; 81P70; 94B05; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
Two linear codes are said to be a linear ℓ-intersection pair if their intersection has dimension ℓ. Guenda et al. (Des Codes Cryptogr. 88, 133–152, 2020) constructed most of the linear ℓ-intersection pairs of MDS codes and we complement their results by constructing some linear ℓ-intersection pairs of MDS codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}$$\end{document} of lengths n = q,q + 1. Furthermore, we construct all the possible linear ℓ-intersection pairs of MDS codes over F2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{2^{m}}$$\end{document} of length n = 2m + 2 ≥ 6. As a consequence, linear ℓ-intersection pairs of MDS codes for all possible parameters are given. Moveover, we can apply our results to asymmetric entanglement-assisted quantum error-correcting codes (AEAQECCs) and obtain all the possible pure MDS CSS-type AEAQECCs.
引用
收藏
页码:1189 / 1206
页数:17
相关论文
共 50 条
  • [1] Linear l-intersection pairs of MDS codes and their applications to AEAQECCs
    Huang, Ziteng
    Fang, Weijun
    Fu, Fang-Wei
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (05): : 1189 - 1206
  • [2] Linear l-intersection pairs of codes and their applications
    Guenda, Kenza
    Gulliver, T. Aaron
    Jitman, Somphong
    Thipworawimon, Satanan
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (01) : 133 - 152
  • [3] Maximum Intersection of Linear Codes and Codes Equivalent to Linear
    Avgustinovich S.V.
    Gorkunov E.V.
    Journal of Applied and Industrial Mathematics, 2019, 13 (04) : 600 - 605
  • [4] On the Intersection of Binary Linear Codes
    LIAO Dajian
    LIU Zihui
    Journal of Systems Science & Complexity, 2016, 29 (03) : 814 - 824
  • [5] Intersection of isomorphic linear codes
    BarYahalom, E
    Etzion, T
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 80 (02) : 247 - 256
  • [6] On the Intersection of Binary Linear Codes
    Liao Dajian
    Liu Zihui
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2016, 29 (03) : 814 - 824
  • [7] On the intersection of binary linear codes
    Dajian Liao
    Zihui Liu
    Journal of Systems Science and Complexity, 2016, 29 : 814 - 824
  • [8] On additive MDS codes with linear projections
    Adriaensen, Sam
    Ball, Simeon
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 91
  • [9] Separating Redundancy of Linear MDS Codes
    Abdel-Ghaffar, Khaled A. S.
    Weber, Jos H.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 1894 - +
  • [10] On Linear Complementary Pairs of Codes
    Carlet, Claude
    Guneri, Cem
    Ozbudak, Ferruh
    Ozkaya, Buket
    Sole, Patrick
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6583 - 6589