Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations

被引:0
作者
An Wang
Yang Cao
Jing-Xian Chen
机构
[1] Nantong University,School of Science
[2] Nantong University,School of Transportation
[3] Nantong University,School of Business
来源
Journal of Optimization Theory and Applications | 2019年 / 181卷
关键词
Generalized absolute value equations; Newton method; Convergence; Differential function; 65F10; 90C05; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by separating the differential and the non-differential parts of the generalized absolute value equations, a class of modified Newton-type iteration methods are proposed. The modified Newton-type iteration method involves the well-known Picard iteration method as the special case. Convergence properties of the new iteration schemes are analyzed in detail. In particular, some specific sufficient conditions are presented for two special coefficient matrices. Finally, two numerical examples are given to illustrate the effectiveness of the proposed modified Newton-type iteration methods.
引用
收藏
页码:216 / 230
页数:14
相关论文
共 48 条
  • [1] Rohn J(2004)A theorem of the alternatives for the equation Linear Multilinear Algebra 52 421-426
  • [2] Mangasarian OL(2007)Absolute value programming Comput. Optim. Appl. 36 43-53
  • [3] Schäfur U(2004)On : the modulus algorithm for the linear complementarity problem Oper. Res. Lett. 32 350-354
  • [4] Mangasarian OL(2006)Absolute value equations Linear Algebra Appl. 419 359-367
  • [5] Meyer RR(2010)Modulus-based matrix splitting iteration methods for linear complementarity problems Numer. Linear Algebra Appl. 17 917-933
  • [6] Bai ZZ(2013)Modulus-based synchronous multisplitting iteration methods for linear complementarity problems Numer. Linear Algebra Appl. 20 425-439
  • [7] Bai ZZ(2009)A modified modulus method for symmetric positive-definite linear complementarity problems Numer. Linear Algebra Appl. 16 129-143
  • [8] Zhang LL(2009)On unique solvability of the absolute value equation Optim. Lett. 3 603-606
  • [9] Dong JL(2018)The unique solution of the absolute value equations Appl. Math. Lett. 76 195-200
  • [10] Jiang MQ(2014)An iterative method for solving absolute value equations and sufficient conditions for unique solvability Optim. Lett. 8 35-44