A Novel Application of the Classical Banach Fixed Point Theorem

被引:0
作者
Choudhuri D. [1 ]
机构
[1] Department of Mathematics, National Institute of Technology Rourkela, Rourkela
关键词
Contraction map; Elliptic PDE; Fixed point; Fundamental solution; Sobolev space;
D O I
10.1007/s40819-016-0194-3
中图分类号
学科分类号
摘要
Using the classical Banach fixed point theorem, we propose a novel method to obtain existence and uniqueness result pertaining to the solutions of semilinear elliptic partial differential equation of the type Δ u+ f(x, u, Du) = 0 , in Ω ⊂ R n and u| ∂ Ω = 0 , in a suitable Sobolev space. Here f:Ω×R×Rn→R is either a linear or a non-linear Lipshitz continuous function. The approach attempted here can be used as an algorithm by the numerical analysts to determine a solution to a partial differential equation of the above type. © 2016, Springer India Pvt. Ltd.
引用
收藏
页码:1799 / 1808
页数:9
相关论文
共 31 条
  • [1] Armbuster D., Marthaler D., Ringhofer C., Efficient simulation of supply chain, Proceedings of the Winter Simulation Conference, pp. 1345-1348, (2002)
  • [2] Aw A., Rascle M., Resurrection of ‘second order’ models of traffic flow, SIAM J. Appl. Math., 60, 3, pp. 916-938, (2000)
  • [3] Choudhuri D., Raja Sekhar G.P., Thermocapillary drift on a spherical drop in a viscous fluid, Phys. Fluids, 25, 43104, pp. 1-14, (2013)
  • [4] Sharanya V., Raja Sekhar G.P., Thermocapillary migration of a spherical drop in an arbitrary transient Stokes flow, Phys. Fluids, 27, 63104, pp. 1-21, (2014)
  • [5] Prakash J., Raja Sekhar G.P., De S., Bohm M., Convection–diffusion–reaction inside a spherical porous pellet in the presence of oscillatory flow, Eur. J. Mech. B Fluids, 29, pp. 483-493, (2010)
  • [6] Choudhuri D., Sri Padmavati B., A study of an arbitrary Stokes flow past a fluid coated sphere in a fluid of a different viscosity, Z. Angew. Math. Phys., 61, pp. 317-328, (2010)
  • [7] Venkatalaxmi A., Sri Padmavati B., Amaranath T., A general solution of Oseen equations, Fluid Dyn. Res., 39, pp. 595-606, (2007)
  • [8] Kuila S., Raja Sekhar T., Riemann solution for ideal isentropic magnetogasdynamics, Meccanica, 49, 10, pp. 2453-2465, (2014)
  • [9] Riesz F., Sur les oprations fonctionnelles linaires, C. R. Acad. Sci. Paris, 149, pp. 974-977, (1909)
  • [10] Lax P.D., Milgram A.N., Parabolic equations, Ann. Math. Stud., 33, pp. 167-190, (1954)