On the connectedness of the branch loci of moduli spaces of orientable Klein surfaces

被引:0
作者
Antonio F. Costa
Milagros Izquierdo
Ana M. Porto
机构
[1] UNED,Departamento de Matematicas
[2] Linköpings Universitet,Matematiska institutionen
来源
Geometriae Dedicata | 2015年 / 177卷
关键词
Klein surface; Riemann surface; Moduli space; Automorphism; 30F50; 30F10; 14H37;
D O I
暂无
中图分类号
学科分类号
摘要
Let M(g,+,k)K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_{(g,+,k)}^{K}$$\end{document} be the moduli space of orientable Klein surfaces of genus g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} with k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} boundary components (see Alling and Greenleaf in Lecture notes in mathematics, vol 219. Springer, Berlin, 1971; Natanzon in Russ Math Surv 45(6):53–108, 1990). The space M(g,+,k)K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_{(g,+,k)} ^{K}$$\end{document} has a natural orbifold structure with singular locus B(g,+,k)K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B} _{(g,+,k)}^{K}$$\end{document}. If g>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g>2$$\end{document} or k>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>0$$\end{document} and 2g+k>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g+k>3$$\end{document} the set B(g,+,k)K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B} _{(g,+,k)}^{K}$$\end{document} consists of the Klein surfaces admitting non-trivial symmetries and we prove that, in this case, the singular locus is connected.
引用
收藏
页码:149 / 164
页数:15
相关论文
共 38 条
  • [1] Alexeevski A(2006)Noncommutative two-dimensional topological field theories and Hurwitz numbers for real algebraic curves Sel. Math. (N.S.) 12 307-377
  • [2] Natanzon S(2013)On the connectivity of branch loci of moduli spaces Ann. Acad. Sci. Fenn. Math. 38 245-258
  • [3] Bartolini G(2010)On the connectedness of the branch locus of the moduli space of Riemann surfaces Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 104 81-86
  • [4] Costa AF(2012)On the connectedness of the branch locus of the moduli space of Riemann surfaces of low genus Proc. Am. Math. Soc. 140 35-45
  • [5] Izquierdo M(1992)Involutions of compact Klein surfaces Math. Z. 211 461-478
  • [6] Bartolini G(2014)The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 3, 4 and 5 Rev. Mat. Complut. 27 305-326
  • [7] Costa AF(1995)Triangulations and moduli spaces of Riemann surfaces with group actions Manuscr. Math. 88 209-224
  • [8] Izquierdo M(1995)Classification of the orientation reversing homeomorphisms of finite order of surfaces Topol. Appl. 62 145-162
  • [9] Porto AM(2002)On the connectedness of the locus of real Riemann surfaces Ann. Acad. Sci. Fenn. Math. 27 341-356
  • [10] Bartolini G(2010)On the connectedness of the branch locus of the moduli space of Riemann surfaces of genus Glasg. Math. J. 52 401-408