Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: The case of lung cancer in Long Island, New York

被引:56
作者
Goovaerts P. [1 ]
Jacquez G.M. [1 ]
机构
[1] Biomedware Inc., Ann Arbor, MI
关键词
Neutral Model; Semivariogram Model; Complete Spatial Randomness; Sequential Gaussian Simulation; Spatial Outlier;
D O I
10.1186/1476-072X-3-14
中图分类号
学科分类号
摘要
Background: Complete Spatial Randomness (CSR) is the null hypothesis employed by many statistical tests for spatial pattern, such as local cluster or boundary analysis. CSR is however not a relevant null hypothesis for highly complex and organized systems such as those encountered in the environmental and health sciences in which underlying spatial pattern is present. This paper presents a geostatistical approach to filter the noise caused by spatially varying population size and to generate spatially correlated neutral models that account for regional background obtained by geostatistical smoothing of observed mortality rates. These neutral models were used in conjunction with the local Moran statistics to identify spatial clusters and outliers in the geographical distribution of male and female lung cancer in Nassau, Queens, and Suffolk counties, New York, USA. Results: We developed a typology of neutral models that progressively relaxes the assumptions of null hypotheses, allowing for the presence of spatial autocorrelation, non-uniform risk, and incorporation of spatially heterogeneous population sizes. Incorporation of spatial autocorrelation led to fewer significant ZIP codes than found in previous studies, confirming earlier claims that CSR can lead to over-identification of the number of significant spatial clusters or outliers. Accounting for population size through geostatistical filtering increased the size of clusters while removing most of the spatial outliers. Integration of regional background into the neutral models yielded substantially different spatial clusters and outliers, leading to the identification of ZIP codes where SMR values significantly depart from their regional background. Conclusion: The approach presented in this paper enables researchers to assess geographic relationships using appropriate null hypotheses that account for the background variation extant in real-world systems. In particular, this new methodology allows one to identify geographic pattern above and beyond background variation. The implementation of this approach in spatial statistical software will facilitate the detection of spatial disparities in mortality rates, establishing the rationale for targeted cancer control interventions, including consideration of health services needs, and resource allocation for screening and diagnostic testing. It will allow researchers to systematically evaluate how sensitive their results are to assumptions implicit under alternative null hypotheses. © 2004 Goovaerts and Jacquez; licensee BioMed Central Ltd.
引用
收藏
页数:23
相关论文
共 24 条
[1]  
Jacquez G.M., GIS as an enabling technology, GIS and Health, pp. 17-28, (1998)
[2]  
Rushton G., Elmes G., McMaster R., Considerations for improving geographic information system research in public health, Journal of the Urban and Regional Information Systems Association, 12, pp. 31-49, (2000)
[3]  
Gustafson E.J., Quantifying landscape spatial pattern: What is the state of the art?, Ecosystems, 1, pp. 143-156, (1998)
[4]  
Waller L.A., Jacquez G.M., Disease models implicit in statistical tests of disease clustering, Epidemiology, 6, pp. 584-590, (1995)
[5]  
Sokal R.R., Oden N.L., Thomson B.A., Local spatial autocorrelation in a biological model, Geographical Analysis, 30, pp. 331-354, (1998)
[6]  
Fortin M.J., Jacquez G.M., Randomization tests and spatially auto-correlated data, Bulletin of the Ecological Society of America, 81, 3, pp. 201-205, (2000)
[7]  
Ord J.K., Getis A., Testing for local spatial autocorrelation in the presence of global autocorrelation, Journal of Regional Science, 41, pp. 411-432, (2001)
[8]  
Goovaerts P., Geostatistics for Natural Resources Evaluation, (1997)
[9]  
Goovaerts P., Jacquez G.M., Greiling D., Exploring scale-dependent correlations between cancer mortality rates using factorial kriging and population-weighted semivariograms: A simulation study, Geographical Analysis, (2004)
[10]  
Jacquez G.M., Greiling D.A., Local clustering in breast, lung and colorectal cancer in Long Island, New York, Int. J. Health Geogr., 2, (2003)