Renormalization aspects of N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}=1$$\end{document} Super Yang–Mills theory in the Wess–Zumino gauge

被引:0
作者
M. A. L. Capri
D. R. Granado
M. S. Guimaraes
I. F. Justo
L. Mihaila
S. P. Sorella
D. Vercauteren
机构
[1] UERJ-Universidade do Estado do Rio de Janeiro,Departamento de Física Teórica, Instituto de Física
[2] Karlsruhe Institute of Technology (KIT),Institut für Theoretische Teilchenphysik
来源
The European Physical Journal C | 2014年 / 74卷 / 4期
关键词
Ghost; Gauge Field; Ward Identity; Mill Theory; Renormalization Constant;
D O I
10.1140/epjc/s10052-014-2844-0
中图分类号
学科分类号
摘要
The renormalization of N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}=1$$\end{document} Super Yang–Mills theory is analyzed in the Wess–Zumino gauge, employing the Landau condition. An all-orders proof of the renormalizability of the theory is given by means of the Algebraic Renormalization procedure. Only three renormalization constants are needed, which can be identified with the coupling constant, gauge field, and gluino renormalization. The non-renormalization theorem of the gluon–ghost–antighost vertex in the Landau gauge is shown to remain valid in N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}=1$$\end{document} Super Yang–Mills. Moreover, due to the non-linear realization of the supersymmetry in the Wess–Zumino gauge, the renormalization factor of the gauge field turns out to be different from that of the gluino. These features are explicitly checked through a three-loop calculation.
引用
收藏
相关论文
共 59 条
  • [1] Amati D(1988)undefined Phys. Rep. 162 169-undefined
  • [2] Konishi K(1983)undefined Front. Phys. 58 1-undefined
  • [3] Meurice Y(1995)undefined Lect. Notes Phys. M 28 1-undefined
  • [4] Rossi GC(2001)undefined Eur. Phys. J. C 20 105-undefined
  • [5] Veneziano G(1992)undefined Class. Quantum Gravity 9 1663-undefined
  • [6] Gates SJ(1995)undefined Int. J. Mod. Phys. A 10 3781-undefined
  • [7] Grisaru MT(1995)undefined Int. J. Mod. Phys. A 10 3937-undefined
  • [8] Rocek M(1996)undefined Nucl. Phys. B 476 329-undefined
  • [9] Siegel W(2002)undefined Mod. Phys. Lett. A 17 739-undefined
  • [10] Piguet O(1991)undefined Nucl. Phys. B 356 154-undefined