On singularly perturbed q-difference-differential equations with irregular singularity

被引:0
作者
S. Malek
机构
[1] Université de Lille 1,
[2] UFR de mathématiques,undefined
来源
Journal of Dynamical and Control Systems | 2011年 / 17卷
关键词
-Laplace transform; Whitney ; functions; formal power series; Poincaré asymptotic expansions; 35C10; 35C20;
D O I
暂无
中图分类号
学科分类号
摘要
We study a q-analog of a singularly perturbed Cauchy problem with irregular singularity in the complex domain. We construct solutions of this problem that are holomorphic on open half-q-spirals. Using a version of a q-analog of the Malgrange–Sibuya theorem obtained by J.-P. Ramis, J. Sauloy, and C. Zhang, we show the existence of a formal power-series solution in the perturbation parameter which is the q-asymptotic expansion of these holomorphic solutions.
引用
收藏
页码:243 / 271
页数:28
相关论文
共 12 条
[1]  
Canalis-Durand M(2007)Monomial summability and doubly singular differential equations J. Differ. Equations 233 485-511
[2]  
Mozo-Fernandez J(2003)On Équations aux q-différences. Gaz. Math. 96 20-49
[3]  
Schäfke R(2009)-summation and confluence Ann. Inst. Fourier 59 347-392
[4]  
Di Vizio L(2009)On complex singularity analysis for linear J. Dynam. Control Systems 15 83-98
[5]  
Ramis J-P(2002)-differencedifferential equations C. R. Math. Acad. Sci. Paris 335 899-902
[6]  
Sauloy J(undefined)Développement asymptotique undefined undefined undefined-undefined
[7]  
Zhang C(undefined)-Gevrey et fonction thêta de Jacobi undefined undefined undefined-undefined
[8]  
Di Vizio L(undefined)undefined undefined undefined undefined-undefined
[9]  
Zhang C(undefined)undefined undefined undefined undefined-undefined
[10]  
Malek S(undefined)undefined undefined undefined undefined-undefined