Affirmative Solutions on Local Antimagic Chromatic Number

被引:1
作者
Gee-Choon Lau
Ho-Kuen Ng
Wai-Chee Shiu
机构
[1] Universiti Teknologi MARA (Segamat Campus),Faculty of Computer and Mathematical Sciences
[2] San José State University,Department of Mathematics
[3] The Chinese University of Hong Kong,Department of Mathematics
[4] Beijing Institute of Technology,College of Global Talents
来源
Graphs and Combinatorics | 2020年 / 36卷
关键词
Local antimagic labeling; Local antimagic chromatic number; 05C78; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
An edge labeling of a connected graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V, E)$$\end{document} is said to be local antimagic if it is a bijection f:E→{1,…,|E|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:E \rightarrow \{1,\ldots ,|E|\}$$\end{document} such that for any pair of adjacent vertices x and y, f+(x)≠f+(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+(x)\not = f^+(y)$$\end{document}, where the induced vertex label f+(x)=∑f(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+(x)= \sum f(e)$$\end{document}, with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by χla(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{la}(G)$$\end{document}, is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we give counterexamples to the lower bound of χla(G∨O2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{la}(G \vee O_2)$$\end{document} that was obtained in [Local antimagic vertex coloring of a graph, Graphs Combin. 33:275–285 (2017)]. A sharp lower bound of χla(G∨On)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{la}(G\vee O_n)$$\end{document} and sufficient conditions for the given lower bound to be attained are obtained. Moreover, we settled Theorem 2.15 and solved Problem 3.3 in the affirmative. We also completely determined the local antimagic chromatic number of complete bipartite graphs.
引用
收藏
页码:1337 / 1354
页数:17
相关论文
共 12 条
[1]  
Arumugam S(2017)Local antimagic vertex coloring of a graph Graphs Combin. 33 275-285
[2]  
Premalatha K(2013)Construction of magic rectangles of odd order Aust. J. Combin. 55 131-144
[3]  
Bacǎ M(2018)Proof of a local antimagic conjecture Discr. Math. Theor. Comp. Sci. 20 1-300
[4]  
Semaničová-Feňovčíková A(2018)On local antimagic chromatic number of cycle related join graphs Discuss. Math. Graph Theory 40 293-undefined
[5]  
Chai ES(2008)A matrix approach to construct magic rectangles of even order Aust. J. Combin. undefined undefined-undefined
[6]  
Das A(undefined)undefined undefined undefined undefined-undefined
[7]  
Midha C(undefined)undefined undefined undefined undefined-undefined
[8]  
Haslegrave J(undefined)undefined undefined undefined undefined-undefined
[9]  
Lau GC(undefined)undefined undefined undefined undefined-undefined
[10]  
Ng HK(undefined)undefined undefined undefined undefined-undefined