Sheaves of low rank in three-dimensional projective space

被引:0
作者
Benjamin Schmidt
机构
[1] Institut für Algebraische Geometrie,Gottfried Wilhelm Leibniz Universität Hannover
来源
European Journal of Mathematics | 2023年 / 9卷
关键词
Derived categories; Moduli spaces of sheaves; Threefolds; Stability conditions; 14J60; 14D20; 14F06; 14F08;
D O I
暂无
中图分类号
学科分类号
摘要
We classify Chern characters of semistable sheaves up to rank four in three-dimensional projective space. As a corollary we show that moduli spaces of semistable sheaves between rank zero and four with maximal third Chern character are smooth and irreducible.
引用
收藏
相关论文
共 39 条
[1]  
Bayer A(2016)The space of stability conditions on abelian threefolds, and on some Calabi–Yau threefolds Invent. Math. 206 869-933
[2]  
Macrì E(2014)Bridgeland stability conditions on threefolds I: Bogomolov–Gieseker type inequalities J. Algebraic Geom. 23 117-163
[3]  
Stellari P(2017)Bridgeland stability conditions on Fano threefolds Épijournal Géom. Algébrique 1 317-345
[4]  
Bayer A(2007)Stability conditions on triangulated categories Ann. Math. 166 241-291
[5]  
Macrì E(2008)Stability conditions on Duke Math. J. 141 106-136
[6]  
Toda Y(2016) surfaces Algebr. Geom. 3 193-243
[7]  
Bernardara M(1985)The ample cone of moduli spaces of sheaves on the plane Ann. Sci. École Norm. Sup. 18 787-813
[8]  
Macrì E(2018)Fibrés stables et fibrés exceptionnels sur Michigan Math. J. 67 45-60
[9]  
Schmidt B(1977)Families of elliptic curves in Ann. Math. 106 1-200
[10]  
Zhao X(1882) and Bridgeland stability J. École Polyt. 52 317-329