Algorithm for speech emotion recognition classification based on Mel-frequency Cepstral coefficients and broad learning system

被引:0
|
作者
Zhiyou Yang
Ying Huang
机构
[1] Liuzhou Railway Vocational Technical College,Electronic Information School
[2] Wuhan University,undefined
来源
Evolutionary Intelligence | 2022年 / 15卷
关键词
Speech emotion recognition; Broad learning system; Human–computer interaction; MFCC; Classification;
D O I
暂无
中图分类号
学科分类号
摘要
Speech plays a major role in emotional transmitting information in humans, and speech emotion recognition has become an important part of the human–computer system, especially in specific systems with high requirements for real-time and accuracy. To improve the accuracy and real-time of speech emotion recognition, people have done a lot of work in speech emotion feature extraction and speech emotion recognition algorithms, but the recognition rate also needs improvement. In this paper, we propose a speech emotion recognition method based on Mel-frequency Cepstral coefficients (MFCC) and broad learning network. 39-dimensional MFCC features were extracted after preprocess of the speech signal. After labelling and standardizing the data, a data prediction model is built. Finally, the data set is split into training and test data onto a certain ratio (0.8). We experimented with broad learning network architecture. And then the data processing in the broad learning network is improved. The proposed algorithm is a neural network structure that does not rely on deep structure, which has a small amount of calculation, excellent calculation speed and simple structure. The experimental results show that the proposed network architecture achieves higher accuracy and it turned out to be the most accurate in recognizing emotions in CASIA Chinese emotion corpus. The recognition rate can reach 100%. Therefore, the proposed network architecture provides an effective method of speech emotion recognition.
引用
收藏
页码:2485 / 2494
页数:9
相关论文
共 50 条
  • [21] Convolution neural network based automatic speech emotion recognition using Mel-frequency Cepstrum coefficients
    Manju D. Pawar
    Rajendra D. Kokate
    Multimedia Tools and Applications, 2021, 80 : 15563 - 15587
  • [22] Speech Based Arithmetic Calculator Using Mel-Frequency Cepstral Coefficients and Gaussian Mixture Models
    Husain, Moula
    Meena, S. M.
    Gonal, Manjunath K.
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND INFORMATICS (ICACNI 2015), VOL 1, 2016, 43 : 209 - 218
  • [23] Automatic recognition of birdsongs using mel-frequency cepstral coefficients and vector quantization
    Lee, Chang-Hsing
    Lien, Cheng-Chang
    Huang, Ren-Zhuang
    IMECS 2006: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, 2006, : 331 - +
  • [24] Computing Mel-frequency cepstral coefficients on the power spectrum
    Molau, S
    Pitz, M
    Schlüter, R
    Ney, H
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 73 - 76
  • [25] Mel-frequency Cepstral Coefficients for Eye Movement Identification
    Nguyen Viet Cuong
    Vu Dinh
    Lam Si Tung Ho
    2012 IEEE 24TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2012), VOL 1, 2012, : 253 - 260
  • [26] Chip design of mel frequency cepstral coefficients for speech recognition
    Wang, JC
    Wang, JF
    Weng, YS
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 3658 - 3661
  • [27] Prediction of fundamental frequency and voicing from mel-frequency cepstral coefficients for unconstrained speech reconstruction
    Milner, Ben
    Shao, Xu
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2007, 15 (01): : 24 - 33
  • [28] Robust Acoustic Speech Feature Prediction From Noisy Mel-Frequency Cepstral Coefficients
    Milner, Ben
    Darch, Jonathan
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2011, 19 (02): : 338 - 347
  • [29] Identification of Language using Mel-Frequency Cepstral Coefficients (MFCC)
    Koolagudi, Shashidhar G.
    Rastogi, Deepika
    Rao, K. Sreenivasa
    INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, 2012, 38 : 3391 - 3398
  • [30] Using Mel-Frequency Cepstral Coefficients in Missing Data Technique
    Jun, Z. (zhj_angun@sina.com.cn), 1600, Hindawi Publishing Corporation (2004):